Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 8(3): 299-307, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793738

RESUMO

BACKGROUND: During long-term culture of primitive hematopoietic cells large numbers of mature cells are generated that, on the one hand, consume nutrients and cytokines present in the medium and, on the other hand, may produce or elicit the production of soluble factors that limit the growth of primitive cells. Thus it is possible that under standard culture conditions hematopoietic stem and progenitor cells are unable to display their true proliferation and expansion potentials. METHODS: Hematopoietic cell populations, enriched for CD34+ cells, were obtained from both umbilical cord blood (UCB) and mobilized peripheral blood (MPB), and cultured in cytokine-supplemented liquid culture, under continuous removal of mature cells by means of weekly re-selection of primitive, lineage-negative (Lin-) cells. Proliferation and expansion capacities of such cells were determined weekly for a 42-day culture period. RESULTS: As expected, based on our previous studies in standard liquid cultures, throughout the culture period there was a continuous decrease in the proportion of progenitor cells; however, after every re-selection on days 7, 14 and 21, there was a significant enrichment for both CD34+ cells and colony-forming cells (CFC). As a result of such an enrichment, the cumulative increase in the numbers of total cells and CFC in cultures with two, three or four selections was significantly higher than the increments observed in standard cultures, in which only a single selection was performed on day 0. Cultures of UCB cells showed consistently higher levels of both total cells and CFC than cultures of MPB cells. DISCUSSION: Taken together, these results indicate that continuous removal of mature cells from liquid cultures of primitive progenitors results in higher increments in the levels of both total cells and CFC.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Adolescente , Adulto , Antígenos CD34/análise , Técnicas de Cultura de Células/métodos , Linhagem da Célula , Separação Celular/métodos , Sangue Fetal/citologia , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/química , Humanos , Cinética , Pessoa de Meia-Idade , Células-Tronco/citologia
2.
Cytotherapy ; 7(4): 334-44, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16162455

RESUMO

BACKGROUND: During the last few years there has been increasing interest, from both biologic and clinical points of view, in the ex vivo expansion of umbilical cord blood (UCB)-derived hematopoietic cells. This has brought about the need to characterize different cell populations present in UCB, and to explore different ex vivo approaches for the culture, expansion and biologic manipulation of these cells. METHODS: By using a negative-selection method, two UCB cell populations were obtained that were enriched for primitive lineage-negative (Lin-) cells, including those expressing the CD34 Ag (35-93% of the total cells in each fraction). Population I was enriched for CD34+ Lin- cells, whereas population II was enriched for CD34+ CD38- Lin- cells. Both populations were cultured in serum-free liquid cultures supplemented with different combinations of early and late-acting recombinant cytokines (all of them added at 10 ng/mL). Every 5-7 days proliferation, expansion and differentiation capacities of each population were determined, for a total period of 25-42 days. RESULTS: Both cell populations showed extensive proliferation and expansion capacities; however, population II [2300- and 232-fold increase in nucleated and colony-forming cell (CFC) numbers, respectively] was clearly superior in both parameters compared with population I (1120- and 20-fold increase in nucleated and CFC numbers, respectively). Depending on the cytokine combination used, granulocytes, macrophages and erythroblasts were preferentially produced. We also observed that both populations were highly sensitive to the inhibitory effects of tumor necrosis factor-alpha, even in the presence of stimulatory cytokines. DISCUSSION: This study demonstrates that the two progenitor cell-enriched populations obtained by negative selection possess extensive proliferation and expansion potentials in vitro, generating significant numbers of both primitive and mature cells. These cells may be a good alternative to purified CD34+ cells, obtained by positive selection, for pre-clinical and clinical protocols aimed at the ex vivo expansion of UCB cells.


Assuntos
Antígenos CD34/metabolismo , Linhagem da Célula/fisiologia , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Humanos , Imunofenotipagem , Fator de Necrose Tumoral alfa/fisiologia
3.
J Hematother Stem Cell Res ; 10(3): 347-54, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11454310

RESUMO

Graft-versus-host disease (GVHD) is currently one of the major obstacles for successful allogeneic bone marrow transplantation (BMT). GVHD results from a complex set of interactions between donor T cells and a variety of target tissues from the host. To gain a better understanding of the biology of the human hematopoietic system in GVHD patients, in the present study we have determined the progenitor cell content in bone marrow (BM) samples from BMT recipients, with and without GVHD, and followed their growth kinetics in Dexter-type long-term marrow cultures (LTMC). We have also assessed some aspects regarding the composition of the hematopoietic microenvironment developed in vitro. As compared to normal subjects, BMT recipients showed decreased numbers of myeloid, erythroid, and multipotent progenitor cells. Interestingly, progenitor levels were significantly lower in GVHD patients (7% of the levels in normal marrow) than in those without GVHD (44% of the levels in normal marrow). When marrow cells from BMT recipients were cultured in LTMC, hematopoiesis was sustained at lower levels and for shorter periods of time, as compared to cultures from normal subjects. The hematopoietic deficiencies observed in this in vitro system were also more pronounced in GVHD patients. In terms of the microenvironment elements, reduced numbers of fibroblastic progenitors and adherent stromal cells were observed in BMT recipients, as compared to normal subjects, who showed 7 colony-forming unit fibroblast (CFU-F)/10(5) marrow cells and 320,000 adherent cells in LTMC. Again, GVHD patients showed more severe deficiencies (0.16 CFU-F/10(5) marrow cells and 34,000 adherent cells in LTMC) than patients without GVHD (2 CFU-F/10(5) marrow cells and 122,000 adherent cells in LTMC). Our results demonstrate that the hematopoietic system of BMT recipients is impaired, both in terms of its in vitro composition and function, and that these deficiencies are clearly more pronounced in patients with GVHD than in those without GVHD. Finally, although the evidence is still preliminary, our results also indicate that the severity of the hematopoietic alterations may be greater in acute GVHD than in chronic GVHD.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Medula Óssea/patologia , Doença Enxerto-Hospedeiro/patologia , Hematopoese , Células-Tronco Hematopoéticas/patologia , Doença Aguda , Adolescente , Adulto , Contagem de Células , Linhagem da Célula , Células Cultivadas/patologia , Doença Crônica , Ensaio de Unidades Formadoras de Colônias , Feminino , Fibroblastos/patologia , Seguimentos , Humanos , Leucemia/terapia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/terapia , Células Estromais/patologia , Transplante Homólogo/efeitos adversos
4.
Leuk Res ; 25(4): 295-303, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11248326

RESUMO

Acute lymphoblastic leukemia (ALL) has been recognized as a hematologic neoplasia that originates at the level of a primitive lymphoid stem/progenitor cell. To date, however, the biology of the hematopoietic system in this disorder is still not fully understood. In the present study, we have determined the progenitor cell content (including myeloid, erythroid and multipotent progenitors) in 14 children with ALL and followed the proliferation kinetics of these cells in Dexter-type long-term marrow cultures. We have also characterized some aspects related to the composition and function of the hematopoietic microenvironment developed in vitro. All patients included in this study showed extremely reduced levels of progenitor cells (median of 6.2% of the levels found in normal marrow). Proliferation of these cells in long-term cultures was markedly deficient, since they showed very low numbers - compared to normal cultures - and reached undetectable levels after only a few weeks. Regarding the microenvironment developed in vitro, whereas normal marrow samples contained a median of 8 fibroblastic progenitors/10(5) marrow cells and the stromal cell layers developed in culture contained a median of 341000 adherent cells per well, ALL marrow samples showed no fibroblastic progenitors and the numbers of adherent cells were 21% of those in normal cultures. Interestingly, the levels of TNFalpha and IL-6 in ALL culture supernatants were significantly increased, compared to normal cultures. Bone marrow samples from all 14 children were also analyzed once they reached a complete clinical and hematological remission. Myeloid, erythroid and multipotent progenitor cell levels were significantly increased, compared to patients at diagnosis, and proliferation of myeloid progenitors in long-term cultures was also improved. In contrast, proliferation of erythroid progenitors showed no difference to that in cultures from patients at diagnosis. The numbers of fibroblastic progenitors and adherent cells were significantly increased, compared to patients at diagnosis, and TNFalpha and IL-6 levels returned to normal. In summary, in the present study, we have demonstrated significant in vitro alterations of the hematopoietic system, both in terms of its composition and function, in pediatric patients with ALL. Importantly, most of these alterations are corrected, at least partially, after chemotherapy.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Adolescente , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Adesão Celular , Contagem de Células , Técnicas de Cultura de Células , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Interleucina-6/metabolismo , Masculino , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
5.
Am J Hematol ; 68(3): 144-8, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11754394

RESUMO

We have previously shown that the levels of hematopoietic progenitors in long-term marrow cultures (LTMC) from patients with aplastic anemia (AA) are drastically reduced, as compared to normal LTMC. We have also reported that when LTMC from AA patients are supplemented with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) there is an increase in colony-forming cell (CFC) levels. However, such a stimulation is only transient and it is followed by an inhibition in CFC growth. Based on these observations, in the present study we have tested the hypothesis that the levels of tumor necrosis factor-alpha (TNF-alpha), an inhibitor of hematopoiesis, are increased in AA LTMC and that such levels are further increased after rhGM-CSF has been added to the cultures for several weeks. Accordingly, we have determined the levels of TNF-alpha in the supernatant of LTMC established from normal (n = 8) and AA (n = 6) bone marrow and in AA LTMC supplemented with rhGM-CSF (n = 6). At the time of culture initiation, TNF-alpha levels were below detection in all the samples analyzed. After 5 weeks of culture, TNF-alpha levels in normal LTMC were very low, with a median of 7.3 pg/mL. In contrast, AA LTMC contained higher levels of TNF-alpha (median of 49.6 pg/mL). In keeping with our hypothesis, addition of rhGM-CSF to AA LTMC resulted in a significant further increase of TNF-alpha levels (median of 135.4 pg/mL). Our results demonstrate an inverse correlation between reduced hematopoiesis in AA LTMC and increased levels of TNF-alpha in this culture system. Based on the results presented here, together with previous reports indicating that TNF-alpha is a potent inducer of apoptosis in hematopoietic progenitor cells, it seems reasonable to suggest that TNF-alpha is implicated in the pathophysiology of AA.


Assuntos
Anemia Aplástica/metabolismo , Células da Medula Óssea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Anemia Aplástica/patologia , Células da Medula Óssea/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Divisão Celular/efeitos dos fármacos , Interações Medicamentosas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Pessoa de Meia-Idade , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
6.
Am J Hematol ; 61(2): 107-14, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10367789

RESUMO

The hematopoietic system in patients with aplastic anemia (AA) shows both quantitative and qualitative deficiencies, i.e., reduced numbers of hematopoietic progenitor cells (HPC) and impaired HPC proliferation in long-term marrow cultures (LTMC). Since recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) has been shown to be a potent stimulator of normal hematopoiesis, both in vivo and in vitro, in the present study we wanted to assess the possibility of stimulating hematopoiesis in LTMC from 17 patients with AA, by weekly addition of rhGM-CSF (10 ng/ml). In LTMC from 11 patients (group of responders), rhGM-CSF induced a significant increase (4.8-fold, compared with untreated cultures) in the levels of myeloid progenitor cells; in contrast, in six patients (group of nonresponders), myeloid progenitors were refractory to this cytokine. In the group of responders, rhGM-CSF also induced a pronounced increment in the levels of nonadherent and adherent cells (5.99- and 5.18-fold, respectively, compared with untreated cultures). Among the different myelopoietic lineages, rhGM-CSF preferentially stimulated the macrophagic lineage; this was evident both at the progenitor and mature cell levels. Interestingly, the effect of rhGM-CSF in LTMC from AA patients was only transient. Indeed, the effects mentioned above were observed only during the first three weeks of culture; afterwards, myeloid progenitor and nonadherent cell levels in treated cultures declined, practically reaching the levels observed in untreated cultures. At the moment, we do not know whether this transient stimulatory effect is due to the production of inhibitory cytokines, by macrophages generated in response to rhGM-CSF, or to the exhaustion of the HPC pool in AA cultures. In all 17 patients, rhGM-CSF had no effect on the kinetics of erythroid or multipotent progenitor cells. These results are in keeping with clinical studies in which it has been observed that most AA patients treated with rhGM-CSF show increments in circulating monocytes and granulocytes, as well as in bone marrow cellularity. However, little or no effect is observed on erythropoiesis. The actual mechanisms involved in the in vitro effects of rhGM-CSF on myeloid progenitor cells from AA bone marrow are still not completely understood. Future studies on this issue should be encouraged, since they may help to understand the in vivo (clinical) effects of this cytokine.


Assuntos
Anemia Aplástica/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Núcleo Celular/ultraestrutura , Células Cultivadas , Células-Tronco Hematopoéticas/patologia , Humanos , Cinética , Proteínas Recombinantes , Fatores de Tempo
7.
Am J Hematol ; 59(2): 149-55, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9766800

RESUMO

By using Dexter-type long-term marrow cultures (D-LTMC), it has been shown previously that hematopoietic progenitor cells (HPC) from patients with aplastic anemia (AA) have a deficient proliferation in vitro. The studies reported to date, however, have focused exclusively on granulomonocytic progenitors and no information exists on erythroid or multipotent progenitor cells. On the other hand, in such studies, the input progenitor cell numbers were significantly below normal levels, thus suggesting that the rapid disappearance of myeloid progenitor cells from AA D-LTMC could also be due, at least in part, to their reduced number at culture onset. In the present study, we have followed the kinetics of myeloid, erythroid, and multipotent progenitors, from 24 AA patients subjected to immunosuppressive therapy (including patients that achieved complete, partial, or no remission at all), throughout a seven-week culture period. For analysis, we grouped all the patients based on their initial content of all three types of progenitors. Thus, we were able to evaluate separately the kinetics of these cells in D-LTMC from patients with normal and subnormal levels of progenitor cells. At the time of marrow sampling, most patients showed decreased levels of HPC; in fact, only 21%, 8%, and 16% of them showed normal levels of myeloid, erythroid, and multipotent progenitors, respectively. When cultured in D-LTMC, HPC from all AA patients analyzed showed a relatively fast disappearance from the cultures. Indeed, myeloid progenitors could be detected for only six weeks, whereas erythroid and multipotent progenitors disappeared from the cultures after two and one weeks of culture, respectively. In contrast, in normal marrow D-LTMC, myeloid, erythroid, and multipotent progenitors were detected for at least seven, five, and three weeks, respectively. Such a deficient proliferation was observed even in cultures of AA patients that contained normal levels of HPC at culture onset. Interestingly, no correlation was found between HPC proliferation in D-LTMC and response to treatment. Thus, the results of this study indicate the presence of a functional in vitro deficiency in the hematopoietic system of patients with AA, including those that achieved partial or complete remission after immunosuppressive treatment. Furthermore, this work suggests that such a proliferation deficiency is more pronounced in erythroid and multipotent progenitors than in their myeloid counterparts.


Assuntos
Anemia Aplástica/tratamento farmacológico , Anemia Aplástica/patologia , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Imunossupressores/uso terapêutico , Adulto , Adesão Celular , Contagem de Células , Divisão Celular/fisiologia , Células Cultivadas , Células Precursoras Eritroides/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA