Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630861

RESUMO

This work presents the synthesis of amine and ferrihydrite functionalized graphene oxide for the removal of fluoride from water. The synthesis of the graphene oxide and the modified with amine groups is developed by following the modified Hummer's method. Fourier transform infrared spectrometry, X-ray, Raman spectroscopy, thermogravimetric analysis, surface charge distribution, specific surface area and porosity, adsorption isotherms, and the van't Hoff equation are used for the characterization of the synthesized materials. Results show that the addition of amines with ferrihydrite generates wrinkles on the surface layers, suggesting a successful incorporation of nitrogen onto the graphene oxide; and as a consequence, the adsorption capacity per unit area of the materials is increased.

2.
Materials (Basel) ; 9(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28787830

RESUMO

Pyrrole monomer was chemically polymerized onto SrCO3-Sr(OH)2 powders to obtain SrCO3-Sr(OH)2/polypyrrole nanocomposite to be used as a candidate for photocatalytic degradation of methylene blue dye (MB). The material was characterized by Fourier transform infrared (FTIR) spectroscopy, UV/Vis spectroscopy, and X-ray diffraction (XRD). It was observed from transmission electronic microscopy (TEM) analysis that the reported synthesis route allows the production of SrCO3-Sr(OH)2 nanoparticles with particle size below 100 nm which were embedded within a semiconducting polypyrrole matrix (PPy). The SrCO3-Sr(OH)2 and SrCO3-Sr(OH)2/PPy nanocomposites were tested in the photodegradation of MB dye under visible light irradiation. Also, the effects of MB dye initial concentration and the catalyst load on photodegradation efficiency were studied and discussed. Under the same conditions, the efficiency of photodegradation of MB employing the SrCO3-Sr(OH)2/PPy nanocomposite increases as compared with that obtained employing the SrCO3-Sr(OH)2 nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA