Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1563, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367684

RESUMO

In the last few years, research on dye-sensitised devices has been focused on the development of solar cells, based on CH3NH3PbX3 (X = I-, Br-, Cl-) composites with perovskite structure. The deposition of perovskite thin films is usually carried out by solution-based processes using spin-coating techniques that result in the production of high quality films. Solar cells made by this method exceed 20% efficiency, with the potential for use in large scale production through ink print or screen printing techniques. As an alternative route, perovskite thin films can be deposited through thermal evaporation. A new method is proposed to produce CH3NH3PbI3, based on a radio-frequency (rf) -sputtering technique that results in a high reproducibility of the films and is compatible with roll-to-roll processes. We deposited thin films of lead-sulphide (PbS) and converted them into perovskite by placing the films in an iodine atmosphere, followed by dipping in a solution of methylammonium iodide (CH3NH3I). The conversions to PbI2 and CH3NH3PbI3 were confirmed by elemental analyses, absorption, and photoluminescence spectroscopy. Structural properties were revealed by X-ray diffraction and infrared and Raman spectroscopy.

2.
ACS Omega ; 3(2): 2027-2032, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458511

RESUMO

In the last two decades, many experiments were conducted in self-organization of nanocrystals into two- and three-dimensional (3D) superlattices and the superlattices were synthesized and characterized by different techniques, revealing their unusual properties. Among all characterization techniques, X-ray diffraction (XRD) is the one that has allowed the confirmation of the 3D superlattice formation due to the presence of sharp and intense diffraction peaks. In this work, we study self-organized superlattices of quantum dots of PbS prepared by dropping a monodispersed colloidal solution on a glass substrate at different temperatures. We showed that the intensity of the low-angle XRD peaks depends strongly on the drying time (substrate temperature). We claim that the peaks are originated from the 3D superlattice. Scanning electron microscopy images show that this 3D superlattice (PbS quantum dots) is formed in flake's shape, parallel to the substrate surface and randomly oriented in the perpendicular planes.

3.
Langmuir ; 33(9): 2257-2262, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28186767

RESUMO

Aqueous colloidal silver nanoparticles have substantial potential in biological application as markers and antibacterial agents and in surface-enhanced Raman spectroscopy applications. A simple method of fabrication and encapsulation into an inert shell is of great importance today to make their use ubiquitous. Here we show that colloids of silver-core/silica-shell nanoparticles can be easily fabricated by a laser-ablation-assisted chemical reduction method and their sizes can be tuned in the range of 2.5 to 6.3 nm by simply choosing a proper water-ethanol proportion. The produced silver nanoparticles possess a porous amorphous silica shell that increases the inertness and stability of colloids, which decreases their toxicity compared with those without silica. The presence of a thin 2 to 3 nm silica shell was proved by EDX mapping. The small sizes of nanoparticles achieved by this method were analyzed using optical techniques, and they show typical photoluminescence in the UV-vis range that shifts toward higher energies with decreasing size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA