Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Neuropharmacology ; 257: 110036, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876308

RESUMO

Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.


Assuntos
Plasticidade Neuronal , Serotonina , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Serotonina/metabolismo , Serotonina/fisiologia , Humanos , Encéfalo/fisiologia
2.
Arch Toxicol ; 98(9): 2797-2816, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38769171

RESUMO

Several studies suggest that crack cocaine users exhibit higher prevalence of both psychiatric and psychosocial problems, with an aggressive pattern of drug use. Nevertheless, few experimental studies attempted to verify the neurotoxicity after crack cocaine exposure, especially when compared with other routes of cocaine administration. This systematic review aimed to verify whether in vitro and/or in vivo crack cocaine exposure is more neurotoxic than cocaine exposure (snorted or injected). A search was performed in the PubMed, EMBASE, Scopus, Web of Science, and LILACS databases for in vitro and in vivo toxicological studies conducted with either rats or mice, with no distinction with regard to sex or age. Other methods including BioRxiv, BDTD, Academic Google, citation searching, and specialist consultation were also adopted. Two independent investigators screened the titles and abstracts of retrieved studies and subsequently performed full-text reading and data extraction. The quality of the included studies was assessed by the Toxicological data Reliability assessment Tool (ToxRTool). The study protocol was registered with the Prospective Registry of Systematic Reviews (PROSPERO; CRD42022332250). Of the twelve studies included, three were in vitro and nine were in vivo studies. According to the ToxRTool, most studies were considered reliable either with or without restrictions, with no one being considered as not reliable. The studies found neuroteratogenic effects, decreased threshold for epileptic seizures, schizophrenic-like symptoms, and cognitive deficits to be associated with crack cocaine exposure. Moreover, both in vitro and in vivo studies reported a worsening in cocaine neurotoxic effect caused by the anhydroecgonine methyl ester (AEME), a cocaine main pyrolysis product, which is in line with the more aggressive pattern of crack cocaine use. This systematic review suggests that crack cocaine exposure is more neurotoxic than other routes of cocaine administration. However, before the scarcity of studies on this topic, further toxicological studies are necessary.


Assuntos
Cocaína Crack , Síndromes Neurotóxicas , Animais , Cocaína Crack/toxicidade , Síndromes Neurotóxicas/etiologia , Humanos , Camundongos , Ratos , Transtornos Relacionados ao Uso de Cocaína
3.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588037

RESUMO

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Assuntos
Canabidiol , Cocaína , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/metabolismo , Glucose/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/metabolismo , Cocaína/farmacologia , Camundongos Endogâmicos C57BL
4.
J Dev Orig Health Dis ; 14(3): 362-370, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37009674

RESUMO

Caffeine consumption occurs throughout life, while nicotine use typically begins during adolescence, the period when caffeine-nicotine epidemiological association begins in earnest. Despite that, few studies in animal models parallel the pattern of coexposure that occurs in humans. Therefore, the neurobehavioral consequences of the association between these drugs remain unclear. Here, we exposed Swiss mice to lifetime caffeine. Caffeine solutions of 0.1 g/L (CAF0.1), 0.3 g/L (CAF0.3), or water (CTRL) were used as the sole liquid source, being offered to progenitors until weaning and, after that, directly to the offspring until the last day of adolescent behavioral evaluation. The open field test was used to evaluate acute effects of nicotine, of lifetime caffeine and of their interaction on locomotion and anxiety-like behavior, while the conditioned place preference test was used to assess the impact of caffeine on nicotine (0.5 mg/Kg, i.p.) reward. Frontal cerebral cortex dopamine content, dopamine turnover, and norepinephrine levels, as well as hippocampal serotonin 1A receptor expression were assessed. CAF0.3 mice exhibited an increase in anxiety-like behavior when compared to CAF0.1 and CTRL ones, but nicotine coexposure mitigated the anxiogenic-like caffeine-induced effect. Distinctively, caffeine had no effect on locomotion and failed to interfere with both nicotine-induced hyperactivity and place preference. There were no significant effects on dopaminergic and serotonergic markers. In conclusion, although caffeine did not affect nicotine reward, considering the strong association between anxiety disorders and tobacco consumption, caffeine-induced anxiety-like behavior advises limiting its consumption during development, including adolescence, as caffeine could be a risk factor to nicotine use.


Assuntos
Cafeína , Nicotina , Adolescente , Humanos , Camundongos , Animais , Nicotina/efeitos adversos , Cafeína/efeitos adversos , Dopamina/metabolismo , Dopamina/farmacologia , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Recompensa , Comportamento Animal
5.
Neurotox Res ; 40(6): 1653-1663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342586

RESUMO

Excessive levels of dopamine in the synaptic cleft, induced by cocaine for example, activates dopaminergic receptors, mainly D1R, D2R, and D3R subtypes, contributing to neurotoxic effects. New synthetic 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine derivatives (the LINS01 compounds), designed as histaminergic receptor (H3R) ligands, are also dopaminergic receptor ligands, mainly D2R and D3R. This study aims to evaluate the neurotoxicity of these new synthetic LINS01 compounds (LINS01003, LINS01004, LINS01011, and LINS01018), as well as to investigate their protective potential on a cocaine model of dopamine-induced neurotoxicity using SH-SY5Y cell line culture. Neurotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and automated cell counting with fluorescent dyes (acridyl orange and propidium iodide) assays. Concentration-response curves (CRCs) were performed for all LINS compounds and cocaine using MTT assay. The results show that LINS series did not decrease cell viability after 48h of exposure-except for 100 µM LINS01018, which was discontinued from the study. Likewise, MTT, LDH, and fluorescent dyes staining showed no difference is cell viability for LINS compounds at 10 µM. When incubated with 2.5 mM cocaine (lethal concentration 50) for 48h, 10 µM of each LINS compound, metoclopramide (D2R antagonist) and haloperidol (D2R/D3R antagonist), ameliorated cocaine-induced neurotoxicity. However, only metoclopramide, haloperidol, and LINS01011 compound significantly decreased LDH released in the culture medium, suggesting that this new synthetic compound presents a more robust effect. This preliminary in vitro neurotoxicity study suggests that LINS01 compounds are not neurotoxic, and that they play a promising role in preventing cocaine-induced neurotoxicity.


Assuntos
Cocaína , Neuroblastoma , Humanos , Cocaína/toxicidade , Dopamina , Haloperidol/farmacologia , Metoclopramida , Piperazina , Corantes Fluorescentes , Técnicas de Cultura de Células
6.
Int J Dev Neurosci ; 82(8): 759-771, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36018565

RESUMO

Nicotine has been used during pregnancy and lactation as a tobacco harm reduction strategy. However, it is unclear whether nicotine exposure during a critical development period negatively impacts stress responses in adulthood. This study investigated how nicotine, administered via breastfeeding, affects the brain-derived neurotrophic factor (BDNF), synaptic proteins levels, and anxiety-like behavior in adult female mice subjected to stress. Female Swiss mice were exposed to saline or nicotine (8 mg/kg/day) through breastfeeding between their fourth and 17th postnatal days (P) via implanted osmotic mini pumps. The unpredictable chronic mild stress (UCMS) protocol was performed during their adulthood (P65) for 10 consecutive days, followed by the elevated plus maze (EPM) test 1 day after the protocol. Animals were euthanized and their blood, collected for plasma corticosterone measurements and their brain structures, dissected for BDNF and synaptic proteins analyses. We found no significant differences in corticosterone levels between groups (Saline/Non-stress, Nicotine/Non-stress, Saline/Stress, and Nicotine/Stress). The UCMS protocol hindered weight gain. Mice exposed to nicotine through breastfeeding with or without the UCMS protocol in adulthood showed higher grooming and head dipping frequency; decreased BDNF levels in cerebellum and striatum; increased postsynaptic density protein 95 (PSD-95), synapsin I, and synaptophysin levels in cerebellum; and decreased PSD-95 and synapsin I levels in brainstem. Our results indicate that nicotine exposure through breastfeeding leads to long-lasting behavioral effects and synaptic protein changes, most of which were independent of the UCMS protocol, even after a long nicotine-free period, highlighting the importance of further studies on nicotine exposure during development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corticosterona , Gravidez , Animais , Camundongos , Feminino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapsinas/metabolismo , Encéfalo/metabolismo , Nicotina , Estresse Psicológico
7.
J Neurosci Res ; 100(10): 1876-1889, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35779255

RESUMO

We verified if cocaine-induced peripheral activation might disrupt [18 F]FDG brain uptake after a cocaine challenge and suggested an optimal protocol to measure cocaine-induced brain metabolic alterations in mice. C57Bl/6 male mice were injected with [18 F]FDG and randomly separated into three groups. Groups 1 and 2 were kept conscious after [18 F]FDG administration and after 5 min received saline or cocaine (20 mg/kg). The animals in group 1 (n = 5) were then evaluated in the open field for 30 min and those from group 2 (n = 6) were kept alone in a home cage for the same period. Forty-five minutes after [18 F]FDG administration, images were acquired for 30 min. Group 3 (n = 6) was kept anesthetized and image acquisition started immediately after tracer injection, for 75 min. Saline (Day 1) or cocaine (Day 2) was injected 5 min after starting acquisition. Another set of animals (n = 5) were treated with cocaine every other day for 10 days or saline (n = 6) and were scanned with the dynamic protocol to verify its efficacy. [18 F]FDG uptake increased after cocaine administration when compared to baseline only in animals kept under anesthesia. No brain effect of cocaine was observed in animals submitted to the open field or kept in the home cage. The use of anesthesia is essential to visualize cocaine-induced changes in brain metabolism by [18 F]FDG PET, providing an interesting preclinical approach to investigate naïve subjects and enabling a bidirectional translational science approach for better understanding of cocaine use disorder.


Assuntos
Cocaína , Fluordesoxiglucose F18 , Animais , Cocaína/farmacologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
8.
Toxicol Appl Pharmacol ; 447: 116068, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597300

RESUMO

Cocaine addiction is a relapsing disorder with loss of control in limiting drug intake. Considering the involvement of acetylcholine in the neurobiology of the disease, our aim was to evaluate whether cocaine induces plastic changes in the hippocampal cholinergic muscarinic system. Male Swiss-Webster mice received saline or cocaine (ip) three times daily (60-min intervals) either acutely or in an escalating-dose binge paradigm for 14 days. Locomotor activity was measured in all treatment days. Dopaminergic and cholinergic muscarinic receptors (D1R, D2R, M1-M5, mAChRs), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and acetylcholinesterase (AChE) were quantified in the hippocampus by immunoblotting one hour after the last injection (on drug) or after 14 days of abstinence (withdrawal). Escalating-dose group showed cocaine-induced locomotor sensitization from day 2. M3 mAChR and ChAT significantly increased after the on-drug acute binge treatment. Escalating-dose on-drug group showed increased ChAT, M1, M5 mAChR and D2R; and decreased D1R. Acute-binge withdrawal group showed increased VAChT, M2 mAChR, D1R, and D2R; and decreased M1 mAChR. Escalating-dose withdrawal group presented increased D1R and VAChT and decreased M1 mAChR and D2R. Locomotor activity was negatively correlated with M1 mAChR and AChE in on-drug group and positively correlated with VAChT in withdrawal group. M1 mAChR was positively correlated with M2 mAChR and ChAT in on-drug group, whereas ChAT was positively correlated with M5 mAChR in withdrawal group. The results indicate that cocaine induced an increase in the hippocampal cholinergic tone in the presence of the drug, whereas withdrawal causes a resetting in the system.


Assuntos
Cocaína , Acetilcolinesterase/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Colinérgicos , Cocaína/toxicidade , Hipocampo/metabolismo , Masculino , Camundongos , Receptores Muscarínicos/metabolismo
9.
Stress Health ; 38(1): 102-110, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34228884

RESUMO

Sudden deaths without known causes have been reported among rural workers in the last decade, especially in low and middle-income countries. The current study aimed to analyse the association between awakening cortisol response and cardiovascular performance in rural workers before and after the harvesting period. Fifty-four rural male workers and 48 residents were included (non-rural workers) from a sugarcane production area in São Paulo, Brazil. Morning salivary cortisol were analysed before and 7 months after the beginning of burnt sugarcane harvesting. Cardiovascular performance (blood pressure, pulse pressure and heart rate HR) was evaluated using the Incremental Shuttle Walking Test (ISWT). Our findings revealed a negative association between CAR and cardiovascular performance in rural workers at the harvesting period. Specifically, morning cortisol levels significantly increased after seven months of intense harvesting activity, allied to improvements in physical performance, systolic blood pressure and heart rate reactivity to a cardiopulmonary task. No association was observed in the resident group. Altogether, these findings suggest that, at least in the short-term, rural workers presented an adaptive response to the physical demands of sugarcane harvesting work. Longitudinal studies are essential to investigate the long-term effects of harvesting activity on rural workers' health.


Assuntos
Sistema Cardiovascular , Saúde Ocupacional , Saccharum , Brasil , Ritmo Circadiano , Humanos , Hidrocortisona , Masculino , Saliva
10.
Behav Brain Res ; 416: 113546, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34437939

RESUMO

Alcohol use disorder needs more effective treatments because relapse rates remain high. Psychedelics, such as ayahuasca, have been used to treat substance use disorders. Our study aimed to evaluate the effects of ayahuasca on ethanol-induced behavioral sensitization (EIBS). Swiss mice received 2.2 g/kg ethanol or saline IP injections every other day across nine days (D1, D3, D5, D7, and D9), and locomotor activity was evaluated 10 min after each injection. Then, animals were treated daily with ayahuasca (corresponding to 1.76 mg/kg of N,N-dimethyltryptamine, DMT) or water by oral gavage for eight consecutive days. On the seventh day, mice were evaluated in the elevated plus maze. Then, mice were challenged with a single dose of ethanol to measure their locomotor activity. Dopamine receptors, serotonin receptors, dynorphin, and prodynorphin levels were quantified in the striatum and hippocampus by blot analysis. Repeated ethanol administration resulted in EIBS. However, those animals treated with ayahuasca had an attenuated EIBS. Moreover, ayahuasca reduced the anxiogenic response to ethanol withdrawal and prevented the ethanol-induced changes on 5-HT1a receptor and prodynorphin levels in the hippocampus and reduced ethanol effects in the dynorphin/prodynorphin ratio levels in the striatum. These results suggest a potential application of ayahuasca to modulate the neuroplastic changes induced by ethanol.


Assuntos
Banisteriopsis/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bebidas , Etanol/farmacologia , Alucinógenos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Alucinógenos/administração & dosagem , Masculino , Camundongos
11.
Arch Toxicol ; 95(5): 1779-1791, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674969

RESUMO

Crack cocaine users are simultaneously exposed to volatilized cocaine and to its main pyrolysis product, anhydroecgonine methyl ester (AEME). Although the neurotoxic effects of cocaine have been extensively studied, little is known about AEME or its combination. We investigated cell death processes using rat primary hippocampal cells exposed to cocaine (2 mM), AEME (1 mM) and their combination (C + A), after 1, 3, 6 and 12 h. Cocaine increased LC3 I after 6 h and LC3 II after 12 h, but reduced the percentage of cells with acid vesicles, suggesting failure in the autophagic flux, which activated the extrinsic apoptotic pathway after 12 h. AEME neurotoxicity did not involve the autophagic process; rather, it activated caspase-9 after 6 h and caspase-8 after 12 h leading to a high percentage of cells in early apoptosis. C + A progressively reduced the percentage of undamaged cells, starting after 3 h; it activated both apoptotic pathways after 6 h, and was more neurotoxic than cocaine and AEME alone. Also, C + A increased the phosphorylation of p62 after 12 h, but there was little difference in LC3 I or II, and a small percentage of cells with acid vesicles at all time points investigated. In summary, the present study provides new evidence for the neurotoxic mechanism and timing response of each substance alone and in combination, indicating that AEME is more than just a biological marker for crack cocaine consumption, as it may intensify and hasten cocaine neurotoxicity.


Assuntos
Cocaína/análogos & derivados , Animais , Cocaína/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Hipocampo , Neurônios , Síndromes Neurotóxicas , Pirólise , Ratos
12.
Front Toxicol ; 3: 802542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295109

RESUMO

The embryonic stage is the most vulnerable period for congenital abnormalities. Due to its prolonged developmental course, the central nervous system (CNS) is susceptible to numerous genetic, epigenetic, and environmental influences. During embryo implantation, the CNS is more vulnerable to external influences such as environmental tobacco smoke (ETS), increasing the risk for delayed fetal growth, sudden infant death syndrome, and immune system abnormalities. This study aimed to evaluate the effects of in utero exposure to ETS on neuroinflammation in the offspring of pregnant mice challenged or not with lipopolysaccharide (LPS). After the confirmation of mating by the presence of the vaginal plug until offspring birth, pregnant C57BL/6 mice were exposed to either 3R4F cigarettes smoke (Kentucky University) or compressed air, twice a day (1h each), for 21 days. Enhanced glial cell and mixed cell cultures were prepared from 3-day-old mouse pups. After cell maturation, both cells were stimulated with LPS or saline. To inhibit microglia activation, minocycline was added to the mixed cell culture media 24 h before LPS challenge. To verify the influence of in utero exposure to ETS on the development of neuroinflammatory events in adulthood, a different set of 8-week-old animals was submitted to the Autoimmune Experimental Encephalomyelitis (EAE) model. The results indicate that cells from LPS-challenged pups exposed to ETS in utero presented high levels of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFα) and decreased cell viability. Such a proinflammatory environment could modulate fetal programming by an increase in microglia and astrocytes miRNA155. This scenario may lead to the more severe EAE observed in pups exposed to ETS in utero.

13.
Neurosci Lett ; 739: 135448, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33129847

RESUMO

Zika virus (ZIKV) is a mosquito-borne Flavivirus structurally and antigenically related to Dengue virus (DENV). Zika virus has been associated with congenital anomalies and most ZIKV outbreaks have occurred in endemic areas of DENV. The present study investigated the effects of prior DENV serotype 1 (DENV1) immunity in immunocompetent female Swiss mice on gestational ZIKV infection in offspring. Physical/reflex development, locomotor activity, anxiety, visual acuity, and brain-derived neurotrophic factor (BDNF) levels were evaluated in offspring during infancy and adolescence. Anti-DENV1 and anti-ZIKV antibodies were detected in sera of the progenitors, whereas no ZIKV genomes were detected in the offspring brain. Pups from dams with only DENV1 immunity presented alterations of physical/reflex development. Pups from all infected dams exhibited time-related impairments in locomotor activity and anxiolytic-like behavior. Offspring from DENV/ZIKV-infected dams exhibited impairments in visual acuity during infancy but not during adolescence, which was consistent with morphometric analysis of the optic nerve. Pups from DENV1-, ZIKV-, and DENV/ZIKV-infected dams exhibited a decrease in BDNF levels during infancy and an increase during adolescence in distinct brain regions. In summary, we found no influence of prior DENV1 immunity on gestational ZIKV infection in offspring, with the exception of alterations of early visual parameters, and an increase in BDNF levels in the hippocampus during adolescence.


Assuntos
Comportamento Animal , Dengue/imunologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/psicologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/psicologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Fator Neurotrófico Derivado do Encéfalo/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Gravidez
14.
Front Neurosci ; 14: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063826

RESUMO

Exposure to environmental tobacco smoke (ETS) is associated with high morbidity and mortality, mainly in childhood. Our aim was to evaluate the effects of postnatal ETS exposure in the brain 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) uptake of mice by positron emission tomography (PET) neuroimaging in a longitudinal study. C57BL/6J mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal day 3 (P3) to P14. PET analyses were performed in male and female mice during infancy (P15), adolescence (P35), and adulthood (P65). We observed that ETS exposure decreased 18F-FDG uptake in the whole brain, both left and right hemispheres, and frontal cortex in both male and female infant mice, while female infant mice exposed to ETS showed decreased 18F-FDG uptake in the cerebellum. In addition, all mice showed reduced 18F-FDG uptake in infancy, compared to adulthood in all analyzed VOIs. In adulthood, ETS exposure during the early postnatal period decreased brain 18F-FDG uptake in adult male mice in the cortex, striatum, hippocampus, cingulate cortex, and thalamus when compared to control group. ETS induced an increase in 18F-FDG uptake in adult female mice when compared to control group in the brainstem and cingulate cortex. Moreover, male ETS-exposed animals showed decreased 18F-FDG uptake when compared to female ETS-exposed in the whole brain, brainstem, cortex, left amygdala, striatum, hippocampus, cingulate cortex, basal forebrain and septum, thalamus, hypothalamus, and midbrain. The present study shows that several brain regions are vulnerable to ETS exposure during the early postnatal period and these effects on 18F-FDG uptake are observed even a long time after the last exposure. This study corroborates our previous findings, strengthening the idea that exposure to tobacco smoke in a critical period interferes with brain development of mice from late infancy to early adulthood.

15.
Toxicol Rep ; 6: 1223-1229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768333

RESUMO

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6 h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48 h of exposure. All treated groups reduced neuronal viability after 24 h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6 h, with an increase in MDA levels after 48 h. AEME-cocaine combination decreased the enzymes activities after 3 and 6 h, showing an additive effect in MDA levels after 48 h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48 h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

16.
Neurotox Res ; 35(2): 410-420, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30276717

RESUMO

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1 mg/kg/day of rotenone during 4 or 8 weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10 weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.


Assuntos
Teste de Esforço/métodos , Córtex Motor/metabolismo , Degeneração Neural/metabolismo , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Proteostase/fisiologia , Animais , Inseticidas/toxicidade , Masculino , Córtex Motor/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Degeneração Neural/terapia , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Proteostase/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Rotenona/toxicidade
17.
Toxicol Rep, v. 6, p. 1223-1229, nov. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2871

RESUMO

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48h of exposure. All treated groups reduced neuronal viability after 24h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6h, with an increase in MDA levels after 48h. AEME-cocaine combination decreased the enzymes activities after 3 and 6h, showing an additive effect in MDA levels after 48h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

18.
Neurotox Res, v. 35, n. 2, p. 410-420, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2654

RESUMO

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1mg/kg/day of rotenone during 4 or 8weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.

19.
Part Fibre Toxicol ; 15(1): 40, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340610

RESUMO

BACKGROUND: The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS: Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS: Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Monitoramento Ambiental/métodos , Epigênese Genética/efeitos dos fármacos , Nanopartículas/toxicidade , Material Particulado/toxicidade , Animais , Brasil , Cidades , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos Endogâmicos , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula
20.
Alcohol ; 68: 71-79, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525685

RESUMO

The peculiar neurochemical profile of the adolescent brain renders it differently susceptible to several stimuli, including stress and/or drug exposure. Among several stress mediators, nitric oxide (NO) has a role in stress responses. We have demonstrated that adolescent mice are less sensitive to ethanol-induced sensitization than adult mice. The present study investigated whether chronic unpredictable stress (CUS) induces behavioral sensitization to ethanol in adolescent and adult Swiss mice, and investigated the influence of Ca2+-dependent nitric oxide synthase (NOS) activity in the phenomenon. Adolescent and adult mice were exposed to repeated 1.8 g/kg ethanol or CUS and challenged with saline or ethanol. A neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7NI), was administered along with ethanol and CUS to test its effects on behavioral sensitization. Both adolescent and adult mice displayed cross-sensitization between CUS and ethanol in adult mice, with adolescents showing a lower degree of sensitization than adults. nNOS inhibition by 7NI reduced both ethanol sensitization and cross-sensitization. All age differences in the Ca2+-dependent NOS activity in the hippocampus and prefrontal cortex were in the direction of greater activity in adults than in adolescents. Adolescents showed lower sensitivity to cross-sensitization between CUS and ethanol, and the nitric oxide (NO) system seems to have a pivotal role in ethanol-induced behavioral sensitization and cross-sensitization in both adolescent and adult mice.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Psicológico/metabolismo , Envelhecimento/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Corticosterona/sangue , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Indazóis/farmacologia , Camundongos , Atividade Motora/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA