Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(22): 26237-26246, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038087

RESUMO

Renewable cellulose substrates with submicron- and nanoscale structures have revived interest in paper electronics. However, the processes behind their production are still complex and time- and energy-consuming. Besides, the weak electrolytic properties of cellulose with submicron- and nanoscale structures have hindered its application in transistors and integrated circuits with low-voltage operation. Here, we report a simple, low-cost approach to produce flexible ionic conductive cellulose mats using solution blow spinning, which are used both as dielectric interstrate and substrate in low-voltage devices. The electrochemical properties of the cellulose mats are tuned through infiltration with alkali hydroxides (LiOH, NaOH, or KOH), enabling their application as dielectric and substrate in flexible, low-voltage, oxide-based field-effect transistors and pencil-drawn resistor-loaded inverters. The transistors exhibit good transistor performances under operation voltage below 2.5 V, and their electrical performance is strictly related to the type of alkali ionic specie incorporated. Devices fabricated on K+-infiltrated cellulose mats present the best characteristics, indicating pure capacitive charging of the semiconductor. The pencil-drawn load resistor inverter presents good dynamic performance. These findings may pave the way for a new generation of low-power, wearable electronics, enabling concepts such as the "Internet of Things".

2.
Int J Biol Macromol ; 118(Pt B): 1817-1823, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006012

RESUMO

Bio-based chitosan/pectin blend films were prepared by solution casting and fully characterized in terms of their viscoelastic, thermo-mechanical and water affinity properties. Dynamic light scattering and rheological analyses served as a probe that polyelectrolyte complexes were formed through COO-/NH3+ ionic cross-linking, changing the chitosan/pectin solutions from Newtonian to pseudoplastic gel-like systems. The highest degree of ionic cross-linking has been found at a specific mass ratio (chitosan/pectin 25/75) and solid-state data were obtained in detail using dynamic mechanical thermal analysis. Ionic cross-linking was determining on the physical properties of chitosan/pectin blends, which was demonstrated by the thermo-mechanical spectra, high water contact angle and tensile strength of films. The specific thermo-mechanical properties of the chitosan/pectin films can be specifically modulated according to the chitosan/pectin mass ratio to ensure successfully applications in medicine, drug delivery, agricultural and food coatings.


Assuntos
Quitosana/química , Íons/química , Pectinas/química , Difusão Dinâmica da Luz , Elasticidade , Fenômenos Mecânicos , Polímeros/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Viscosidade
3.
Biotechnol Prog ; 33(4): 1085-1095, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28440054

RESUMO

The feasibility of integration of cellulosic ethanol production with the manufacture of cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) was evaluated using eucalyptus cellulose pulp as feedstock and employing the biochemical route alone. For the enzymatic hydrolysis step, experimental central composite design (CCD) methodology was used as a tool to evaluate the effects of solids loading (SL) and enzymatic loading (EL) on glucose release and cellulose conversion. Glucose concentrations from 45 to 125 g/L were obtained after 24 h, with cellulose conversions from 35 to 96%. Validation of the statistical model was performed at SL of 20% and EL of 10 mg protein/g, which was defined by the desirability function as the optimum condition. The sugars released were used for the production of ethanol by Saccharomyces cerevisiae, resulting in 62.1 g/L ethanol after 8 h (yield of 95.5%). For all the CCD experimental conditions, the residual solids presented CNF characteristics. Moreover, the use of a new strategy with temperature reduction from 50 to 35°C after 24 h of enzymatic hydrolysis enabled CNC to be obtained after 144 h. The CNC showed a crystallinity index of 83%, length of 260 nm, diameter of 15 nm, and aspect ratio (L/D) of 15. These characteristics are suitable for many applications, such as reinforcement in polymeric materials and other lower volume higher value bio-based products. The findings indicate the viability of obtaining ethanol and CNC using the biochemical route exclusively, potentially contributing to the future implementation of forest biorefineries. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1085-1095, 2017.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Eucalyptus/química , Nanopartículas/química , Celulose/química , Etanol/química , Eucalyptus/metabolismo , Hidrólise , Saccharomyces cerevisiae/metabolismo
4.
J Agric Food Chem ; 61(29): 7110-9, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23799648

RESUMO

This paper reports on the development of bioactive edible films based on pectin as a dietary matrix and magnesium hydroxide (Mg(OH)2) nanoplates as a reinforcing filler. Nanocomposites of high-methoxyl (HM) and low-methoxyl (LM) pectins were prepared using the casting method at concentrations of Mg(OH)2 ranging from 0.5 to 5 wt %. Atomic force microscopy and FTIR spectroscopy were employed to characterize the nanocomposite structure. The tensile properties and thermal stability of the nanocomposites were also examined to ascertain the effect of Mg(OH)2 inclusion and degree of methoxylation. The results provided evidence that the Mg(OH)2 nanoplates were uniformly dispersed and interacted strongly with the film matrix. The mechanical and thermal properties were significantly improved in the nanocomposite films compared to the control. Mg(OH)2 nanoplates were more effective in improving properties of LM pectin. Preliminary migration studies using arugula leaves confirmed that pectin-Mg(OH)2 nanocomposites can release magnesium hydroxide by contact, demonstrating their potential for magnesium supplementation in bioactive packaging.


Assuntos
Embalagem de Alimentos/métodos , Hidróxido de Magnésio/química , Nanocompostos/química , Pectinas/química , Brassicaceae , Microscopia de Força Atômica , Nanocompostos/ultraestrutura , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria
5.
Carbohydr Polym ; 92(2): 1743-51, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399215

RESUMO

In this paper the mechanical reinforcement of nano-sized brucite, Mg(OH)(2) in a series of bionanocomposite films based on starch was investigated. Brucite nanoplates with an aspect ratio of 9.25 were synthesized by wet precipitation and incorporated into starch matrices at different concentrations (0-7.5 wt.%). Scanning electron microscopy revealed a high degree of nanoplate dispersion within the starch bionanocomposites and good interfacial adhesion between the filler and matrix. The brucite nanoplates formed agglomerates at high concentrations. The reinforcement factor values of the bionanocomposites were higher than the values predicted from the Halphin-Tsai model, which was attributed mainly to the high surface area of the nanoplates. Brucite (1 wt.%) nearly doubled the elastic modulus of starch films. Thermogravimetric analyses indicated some interaction between starch and the brucite that modified their decomposition profiles. Mechanical tests of glycerol plasticized bionanocomposites showed that the reinforcing efficiency of brucite remained high even at 10 wt.% and 20 wt.% of plasticizer.


Assuntos
Hidróxido de Magnésio/química , Nanocompostos/química , Nanopartículas/química , Amido/química , Glicerol/química , Fenômenos Mecânicos , Modelos Moleculares , Conformação Molecular , Plásticos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA