Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet ; 390(10094): 551, 2017 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-28792388

Assuntos
Política , Humanos , Venezuela
2.
BMC Plant Biol ; 14: 40, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24490637

RESUMO

BACKGROUND: Proanthocyanidins (PAs) are secondary metabolites that strongly affect plant quality traits. The concentration and the structure of these metabolites influence the palatability and nutritional value of forage legumes. Hence, modulating PAs in the leaves of forage legumes is of paramount relevance for forage breeders worldwide. The lack of genetic variation in the leaf PA trait within the most important forage species and the difficulties in engineering this pathway via the ectopic expression of regulatory genes, prompted us to pursue alternative strategies to enhance this trait in forage legumes of agronomic interest. The Lotus genus includes forage species which accumulate PAs in edible organs and can thus be used as potential donor parents in breeding programs. RESULTS: We recovered a wild, diploid and PA-rich population of L. corniculatus and crossed with L. tenuis. The former grows in an alkaline-salty area in Spain while the latter is a diploid species, grown extensively in South American pastures, which does not accumulate PAs in the herbage. The resulting interspecific hybrids displayed several traits of outstanding agronomic relevance such as rhizome production, PA levels in edible tissues sufficient to prevent ruminal bloating (around 5 mg of PAs/g DW), biomass production similar to the cultivated parent and potential for adaptability to marginal lands. We show that PA levels correlate with expression levels of the R2R3MYB transcription factor TT2 and, in turn, with those of the key structural genes of the epicatechin and catechin biosynthetic pathways leading to PA biosynthesis. CONCLUSIONS: The L. tenuis x L. corniculatus hybrids, reported herein, represent the first example of the introgression of the PA trait in forage legumes to levels known to provide nutritional and health benefits to ruminants. Apart from PAs, the hybrids have additional traits which may prove useful to breed forage legumes with increased persistence and adaptability to marginal conditions. Finally, our study suggests the hybrids and their progeny are an invaluable tool to gain a leap forward in our understanding of the genetic control of PA biosynthesis and tolerance to stresses in legumes.


Assuntos
Fabaceae/metabolismo , Lotus/metabolismo , Proantocianidinas/metabolismo , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Lotus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 156(4): 2266-77, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628628

RESUMO

The role of the tetraamine spermine in plant defense against pathogens was investigated by using the Arabidopsis (Arabidopsis thaliana)-Pseudomonas viridiflava pathosystem. The effects of perturbations of plant spermine levels on susceptibility to bacterial infection were evaluated in transgenic plants (35S::spermine synthase [SPMS]) that overexpressed the SPMS gene and accumulated spermine, as well as in spms mutants with low spermine levels. The former exhibited higher resistance to P. viridiflava than wild-type plants, while the latter were more susceptible. Exogenous supply of spermine to wild-type plants also increased disease resistance. Increased resistance provided by spermine was partly counteracted by the polyamine oxidase inhibitor SL-11061, demonstrating that the protective effect of spermine partly depends on its oxidation. In addition, global changes in gene expression resulting from perturbations of spermine levels were analyzed by transcript profiling 35S::SPMS-9 and spms-2 plants. Overexpression of 602 genes was detected in 35S::SPMS-9 plants, while 312 genes were down-regulated, as compared to the wild type. In the spms-2 line, 211 and 158 genes were up- and down-regulated, respectively. Analysis of gene ontology term enrichment demonstrated that many genes overexpressed only in 35S::SPMS-9 participate in pathogen perception and defense responses. Notably, several families of disease resistance genes, transcription factors, kinases, and nucleotide- and DNA/RNA-binding proteins were overexpressed in this line. Thus, a number of spermine-responsive genes potentially involved in resistance to P. viridiflava were identified. The obtained results support the idea that spermine contributes to plant resistance to P. viridiflava.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pseudomonas/fisiologia , Espermina Sintase/genética , Espermina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Contagem de Colônia Microbiana , Regulação Enzimológica da Expressão Gênica , Genes de Plantas/genética , Mutação/genética , Oxirredução , Plantas Geneticamente Modificadas , Pseudomonas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermina Sintase/metabolismo , Fatores de Tempo , Transcrição Gênica
4.
Plant Signal Behav ; 6(2): 278-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21330789

RESUMO

Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.


Assuntos
Aclimatação , Arabidopsis/metabolismo , Desidratação , Congelamento , Putrescina/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dioxigenases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA