Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065485

RESUMO

The aim of this 2-year study was to evaluate the influence of bed depth (40 and 60 cm) on the development of tropical ornamental species (Alpinia purpurata, Heliconia latispatha and Strelitzia reginae) and on the removal of different contaminants such as chemical oxygen demand (COD), nitrate (N-NO3), ammonium (N-NH4), total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), total coliforms (TCs) and fecal coliforms (FCs), in horizontal subsurface flow constructed wetlands (HSSF-CWs) for municipal wastewater treatment. The results showed that the depth of 60 cm favored the removal of COD, with removal efficiencies of 94% for the three plant species. The depth of 40 cm was most effective for the removal of N-NH4 (80-90%). Regarding the removal of TN, the removals were similar for the different plants and depths (72-86%). The systems only achieved up to 60% removal of TCs and FCs. The depth of the CWs substrate and its saturation level influenced the development of ornamental vegetation, particularly flower production. For Heliconia latispatha, a bed depth level of 60 cm was more suitable, while for Alpinia purpurata 40 cm was better, and for Strelitzia reginae in both cases there was no flower production. The impact of bed depth on contaminant removal depends on the specific type of contaminant.

2.
Int J Phytoremediation ; : 1-12, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992938

RESUMO

Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.


The research addresses the contamination of water resources in developing countries by landfill leachate and domestic wastewater discharges. It proposes treatment through Partially Saturated Vertical Constructed Wetlands (PSV-CWs), which, despite the limited information available, have been shown to be effective in removing pollutants in effluents with high concentrations. In addition to evaluating PSV-CWs, the study examines the impact of different types of vegetation on pollutant removal efficiency, concluding that PSV-CWs are a promising and viable option for the treatment of these effluents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA