Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 100(24): 10251-10263, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27837316

RESUMO

Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fenômenos Químicos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo
2.
PLoS One ; 8(6): e65563, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799025

RESUMO

Type I pili are proteinaceous tethers that mediate bacterial adhesion of uropathogenic Escherichia coli to surfaces and are thought to help bacteria resist drag forces imparted by fluid flow via uncoiling of their quaternary structure. Uncoiling and recoiling have been observed in force spectroscopy experiments, but it is not clear if and how this process occurs under fluid flow. Here we developed an assay to study the mechanical properties of pili in a parallel plate flow chamber. We show that pili extend when attached E. coli bacteria are exposed to increasing shear stresses, that pili can help bacteria move against moderate fluid flows, and characterize two dynamic regimes of this displacement. The first regime is consistent with entropic contraction as modeled by a freely jointed chain, and the second with coiling of the quaternary structure of pili. These results confirm that coiling and uncoiling happen under flow but the observed dynamics are different from those reported previously. Using these results and those from previous studies, we review the mechanical properties of pili in the context of other elastic proteins such as the byssal threads of mussels. It has been proposed that the high extensibility of pili may help recruit more pili into tension and lower the force acting on each one by damping changes in force due to fluid flow. Our analysis of the mechanical properties suggests additional functions of pili; in particular, their extensibility may reduce tension by aligning pili with the direction of flow, and the uncoiled state of pili may complement uncoiling in regulating the force of the terminal adhesin.


Assuntos
Aderência Bacteriana , Fímbrias Bacterianas/fisiologia , Escherichia coli Uropatogênica/fisiologia , Fenômenos Biomecânicos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estresse Fisiológico , Termodinâmica , Escherichia coli Uropatogênica/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA