Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Prosthodont ; 31(S1): 30-37, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35313026

RESUMO

PURPOSE: This in vitro study evaluated the dimensional accuracy of three 3D printers and one milling machine with their respective polymeric materials using a simplified geometrical model. MATERIALS AND METHODS: A simplified computer-aided design (CAD) model was created. The test samples were fabricated with three 3D printers: a dental desktop stereolithography (SLA) printer, an industrial SLA printer, and an industrial fused deposition modeling (FDM) printer, as well as a 5-axis milling machine. One polymer material was used per industrial printer and milling machine while two materials were used with the dental printer for a total of five study groups. Test specimens were then digitized using a laboratory scanner. The virtual outer caliper method was used to measure the linear dimensions of the digitized 3D printed and milled specimens in x-, y-, and z-axes, and compare them to the known values of the CAD model. Data were analyzed with Kruskal-Wallis one-way ANOVA on Ranks followed by the Tukey's test. RESULTS: Milled specimens were not significantly different from the CAD model in any dimension (p > 0.05). All 3D printed specimens were significantly different from the CAD model in all dimensions (p = 0.01), except the dental SLA 3D printer with one of the polymers tested (Bis-GMA) which was not significantly different in two (x and z) dimensions (p = 0.4 and p = 0.12). CONCLUSIONS: The milling technology tested provided greater dimensional accuracy than the selected 3D printing. Printer, printing technology, and material selection affected the accuracy of the printed model.


Assuntos
Desenho Assistido por Computador , Estereolitografia , Polímeros , Impressão Tridimensional
2.
J Prosthet Dent ; 119(6): 987-993, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29042115

RESUMO

STATEMENT OF PROBLEM: A recommended minimum thickness for monolithic zirconia restorations has not been reported. Assessing a proper thickness that has the necessary load-bearing capacity but also conserves dental hard tissues is essential. PURPOSE: The purpose of this in vitro study was to evaluate the effect of thickness and surface modifications on monolithic zirconia after simulated masticatory stresses. MATERIAL AND METHODS: Monolithic zirconia disks (10 mm in diameter) were fabricated with 1.3 mm and 0.8 mm thicknesses. For each thickness, 21 disks were fabricated. The specimens of each group were further divided into 3 subgroups (n=7) according to the surface treatments applied: untreated (control), airborne-particle abrasion with 50-µm Al2O3 particles at a pressure of 400 kPa at 10 mm, and grinding with a diamond rotary instrument followed by polishing. The biaxial flexure strength was determined by using a piston-on-3-balls technique in a universal testing machine. Flexural loading was applied with a 1.4-mm diameter steel cylinder, centered on the disk, at a crosshead speed of 0.5 mm/min until fracture occurred. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed. The data were statistically analyzed with 2-way ANOVA, Tamhane T2, 1-way ANOVA, and Student t tests (α=.05). RESULTS: The 1.3-mm specimens had significantly higher flexural strength than the 0.8-mm specimens (P<.05). Airborne-particle abrasion significantly increased the flexural strength (P<.05). Grinding and polishing did not affect the flexural strength of the specimens (P>.05). CONCLUSIONS: The mean flexural strength of 0.8-mm and 1.3-mm thick monolithic zirconia was greater than reported masticatory forces. Airborne-particle abrasion increased the flexural strength of monolithic zirconia. Grinding did not affect flexural strength if subsequently polished.


Assuntos
Zircônio , Resistência à Flexão , Mastigação , Difração de Raios X
3.
Am J Orthod Dentofacial Orthop ; 138(4): 463-467, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20889052

RESUMO

INTRODUCTION: The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. METHODS: Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. RESULTS: The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. CONCLUSIONS: Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire.


Assuntos
Desenho de Aparelho Ortodôntico , Braquetes Ortodônticos , Fios Ortodônticos , Análise de Variância , Análise do Estresse Dentário , Fricção , Teste de Materiais , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA