Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 37(10): 2931-2943, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497204

RESUMO

Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this study, we demonstrate the ability to use collagen sequence analyses via proteomics to assist species delimitation as a foundation for informing evolutionary patterns. We uncover biogeographic information of an enigmatic and recently extinct lineage of Nesophontes across their range on the Caribbean islands. First, evolutionary relationships reconstructed from collagen sequences reaffirm the affinity of Nesophontes and Solenodon as sister taxa within Solenodonota. This relationship helps lay the foundation for testing geographical isolation hypotheses across islands within the Greater Antilles, including movement from Cuba toward Hispaniola. Second, our results are consistent with Cuba having just two species of Nesophontes (N. micrus and N. major) that exhibit intrapopulation morphological variation. Finally, analysis of the recently described species from the Cayman Islands (N. hemicingulus) indicates that it is a closer relative to N. major rather than N. micrus as previously speculated. This proteomic sequencing improves our understanding of the origin, evolution, and distribution of this extinct mammal lineage, particularly with respect to the approximate timing of speciation. Such knowledge is vital for this biodiversity hotspot, where the magnitude of recent extinctions may obscure true estimates of species richness in the past.


Assuntos
Evolução Biológica , Colágeno/química , Musaranhos/genética , Animais , Feminino , Masculino , Mandíbula/anatomia & histologia , Filogeografia , Análise de Sequência de Proteína , Caracteres Sexuais , Musaranhos/anatomia & histologia , Índias Ocidentais
2.
PLoS One ; 11(3): e0150650, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938469

RESUMO

Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.


Assuntos
Osso e Ossos/química , Colágeno/química , Espectrometria de Massas/métodos , Datação Radiométrica/métodos , Animais , Arqueologia/métodos , Biodiversidade , Calibragem , Carbono/química , Radioisótopos de Carbono/análise , Fósseis , Humanos , Nitrogênio/química , Paleontologia , Peptídeos/química , Roedores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Índias Ocidentais
3.
J Morphol ; 276(2): 152-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25284728

RESUMO

Theropoda was one of the most successful dinosaurian clades during the Mesozoic and has remained a dominant component of faunas throughout the Cenozoic, with nearly 10,000 extant representatives. The discovery of Archaeopteryx provides evidence that avian theropods evolved at least 155 million years ago and that more than half of the tenure of avian theropods on Earth was during the Mesozoic. Considering the major changes in niche occupation for theropods resulting from the evolution of arboreal and flight capabilities, we have analyzed forelimb and hindlimb proportions among nonmaniraptoriform theropods, nonavian maniraptoriforms, and basal avialans using reduced major axis regressions, principal components analysis, canonical variates analysis, and discriminant function analysis. Our study is the first analysis on theropod limb proportions to apply phylogenetic independent contrasts and size corrections to the data to ensure that all the data are statistically independent and amenable to statistical analyses. The three ordination analyses we performed did not show any significant groupings or deviations between nonavian theropods and Mesozoic avian forms when including all limb elements. However, the bivariate regression analyses did show some significant trends between individual elements that suggested evolutionary trends of increased forelimb length relative to hindlimb length from nonmaniraptoriform theropods to nonavian maniraptoriforms to basal avialans. The increase in disparity and divergence away from the nonavian theropod body plan is well documented within Cenozoic forms. The lack of significant groupings among Mesozoic forms when examining the entire theropod body plan concurrently suggests that nonavian theropods and avian theropods did not substantially diverge in limb proportions until the Cenozoic.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia , Animais , Evolução Biológica , Aves/classificação , Dinossauros/classificação , Voo Animal , Filogenia , Análise de Regressão , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA