Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 226: 628-645, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36464191

RESUMO

This paper evaluates corn starch aerogels, studying different crosslinking agent (trisodium citrate) concentrations (1:1, 1:1.5, and 1:2) and sorption conditions (contact time, adsorbent weight, and initial concentration) regarding the potentially toxic elements (PTEs) [Cd(II) or Zn(II)] adsorption of the aqueous systems. Besides, other properties of aerogels, such as structural properties, specific surface area, and mechanical performance, were evaluated. For adsorption results, better values were observed in adsorption capacity and efficiency for the initial concentration of 100 ppm. In addition, an adsorption time of 12 h and an adsorbent weight of 3.0 g obtained better results due to the possible balance in this time and the high specific surface area available for Cd(II) adsorption. As for the type of adsorbent, the Aero 1:1.5 sample (intermediate crosslinking agent concentration) obtained better results, possibly due to the high porosity, smaller pore sizes, high pore density, and high specific surface area (198 m2·g-1). In addition, hydroxyl groups in the starch aerogel removed Cd(II) ions with 30 % adsorption efficiency. Lastly, Aero 1:1.5 obtained a high mechanical strength at compression and a satisfactory compressive modulus. In contrast, starch aerogels did not absorb the Zn(II) ion.


Assuntos
Cádmio , Poluentes Químicos da Água , Amido/química , Água/química , Íons , Poluentes Químicos da Água/química , Adsorção
2.
Talanta ; 69(2): 488-93, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970593

RESUMO

An on-line preconcentration system for zinc determination in 24-h urine, blood plasma and erythrocyte matrices by flame atomic absorption spectrometry (FAAS) was used. This procedure was based on adsorption of Zn(II) ions onto a minicolumn filled with silica gel, chemically modified with niobium(V) oxide (Nb(2)O(5)-SiO(2)). The determination of the optimum conditions for Zn(II) preconcentration was done using two-level full factorial and Doehlert designs. In the optimization procedure, four variables (sample pH, eluent concentration, sample flow rate and eluent flow rate) were investigated. The results obtained from the full factorial design demonstrated that the sample pH and sample flow rate variables, and their interactions, were statistically significant. A Doehlert matrix was used in order to determine the optimum conditions for the sample pH and sample flow rate. The optimized conditions for sample pH and flow rate sampling were 6.6 and 7.1 ml min(-1), respectively, to obtain the maximum Zn(II) preconcentration and determination in the biological samples studied. Parameters of analytical curve, precision, effect of other ions in the proposed system and accuracy were achieved to assess the proposed method. The accuracy was confirmed by analysis of certified reference materials (urine Seronorm Trace Elements) and recovery tests in blood plasma and erythrocyte samples. Detection limit (3sigma/S) of 0.77 microg l(-1), precision (calculated as relative standard deviation) of 1.5% for Zn(II) concentration of 10 microg l(-1) (n=7) and a sampling frequency of 27 samples/h were obtained from the proposed system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA