RESUMO
Temperature and nutrition are suggested as the primary factors affecting larval survival during the transition from endogenous to exogenous feeding in fish. However, little is known about its simultaneous impact during this period. In this study, Seriola rivoliana eggs were subjected to a constant 24 °C (CTE) and a daily temperature fluctuation (DTF) between 22.8 and 25.2 °C until oil droplet exhaustion (5.5 days after hatching). On the other hand, marine fish larvae mostly rely on live feed, with certain nutritional deficiencies such as poor long-chain fatty acids. Thus, rotifer Brachionus rotundiformis enrichment was simultaneously evaluated with temperature using three enrichment diets: Ori-green, S.presso, and a Domestic emulsion. For this purpose, the five experimental groups were established in triplicate using six 100-L tanks with three 10-L containers inside (18 experimental units in total). One hundred eggs were incubated, using a green water system, and 10 rotifers mL-1 were offered at mouth opening. After oil droplet exhaustion, survival was only affected by temperature (P < 0.01), being higher at DTF compared to CTE. At the same stage, Domestic emulsion resulted in bigger larvae than Ori-green. In a further assay at 3.7 DAH, the relative expression of the trypsin gene was higher at Domestic emulsion compared to S.presso and Ori-green. This study indicates that daily temperature fluctuation can improve larval performance and low levels of EPA and DHA in Domestic emulsion enriched rotifers were not critical for Seriola rivoliana at first feeding.
RESUMO
Ca2+ -activated Cl- channels (CaCCs) are anionic channels that regulate many important physiological functions associated with chloride and calcium flux in some somatic cells. The molecular identity of CaCCs was revealed to be TMEM16A and TMEM16B (also known as Anoctamin or ANO1 and ANO2, respectively) in all eukaryotes. A recent study suggests the presence of TMEM16A in human sperm and a relationship with the rhZP-induced acrosome reaction. However, to the best of our knowledge, little is known about the role of TMEM16A in other spermatic processes such as capacitation or motility. In this study, we evaluated the effects of two TMEM16A antagonists on capacitation, acrosome reaction, and motility in guinea pig sperm; these antagonists were T16Ainh-A01, belonging to a second generation of potent antagonists of TMEM16A, and niflumic acid (NFA), a well-known antagonist of TMEM16A (CaCCs). First of all, we confirmed that the absence of Cl- in the capacitation medium changes motility parameters, capacitation, and the progesterone-induced acrosome reaction. Using a specific antibody, TMEM16A was found as a protein band of â¼120 kDa, which localization was in the apical crest of the acrosome and the middle piece of the flagellum. Inhibition of TMEM16A by T16Ainh-A01 affected sperm physiology by reducing capacitation, blocking the progesterone-induced acrosome reaction under optimal capacitation conditions, inhibiting progressive motility, and the acquisition of hyperactivated motility, diminishing [Ca2+ ]i, and increasing [Cl- ]i. These changes in sperm kinematic parameters provide new evidence of the important role played by TMEM16A in the production of sperm capable of fertilizing oocytes.
Assuntos
Anoctamina-1/antagonistas & inibidores , Pirimidinas/farmacologia , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Tiazóis/farmacologia , Reação Acrossômica/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cálcio/metabolismo , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Cobaias , Masculino , Ácido Niflúmico/farmacologiaRESUMO
Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and ß-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete ß-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for ß-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics.