Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 41(21): 6468-76, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22344249

RESUMO

In the search for a pharmacological answer to treat Chagas disease, eight metal complexes with two bioactive bisphosphonates, alendronate (Ale) and pamidronate (Pam), were described. Complexes of the formula [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, with M = Cu, Co, Mn, Ni, and ([CuPam]·H(2)O)(n) as well as [M(II)(Pam)(2)(H(2)O)(2)]·3H(2)O, with M = Co, Mn and Ni, were synthesized and fully characterized. Crystal structure of [Cu(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O, [Co(II)(Pam)(2)(H(2)O)(2)] and [Ni(II)(Pam)(2)(H(2)O)(2)] were solved by X-ray single crystal diffraction methods and the structures of [M(2)(II)(Ale)(4)(H(2)O)(2)]·2H(2)O complexes M = Co, Mn and Ni were studied by X-ray powder diffraction methods. All obtained complexes were active against the amastigote form of Trypanosoma cruzi (T. cruzi), etiological agent of Chagas disease. Most of them were more active than the corresponding free ligands showing no toxicity for mammalian cells. The main mechanism of the antiparasitic action of bisphosphonates, inhibition of parasitic farnesyl diphosphate synthase (TcFPPS), remains in the obtained metal complexes and an increase in the inhibiting enzyme levels was observed upon coordination. Observed enzymatic inhibition was selective for TcFPPS as the metal complexes showed no or little inhibition of human FPPS. Additionally, metal complexation might improve the bioavailability of the complexes through the hindrance of the phosphonate group's ionization at physiological pH and, eventually, through the ability of plasma proteins to work as complex transporters.


Assuntos
Difosfonatos/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Trypanosoma cruzi/enzimologia , Animais , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Soroalbumina Bovina/metabolismo , Trypanosoma cruzi/citologia , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
2.
Org Biomol Chem ; 10(7): 1424-33, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22215028

RESUMO

α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and against Toxoplasma gondii, the agent responsible for toxoplasmosis, and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T. gondii (TgFPPS). Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) proved to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range, exhibiting an IC(50) of 30 nM. This compound was two-fold more potent than risedronate (IC(50) = 74 nM) that was taken as a positive control. This enzymatic activity was associated with a strong cell growth inhibition against tachyzoites of T. gondii, with an IC(50) value of 2.7 µM.


Assuntos
Antiprotozoários/farmacologia , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Toxoplasma/enzimologia , Antiprotozoários/química , Difosfonatos/química , Inibidores Enzimáticos/química , Geraniltranstransferase/metabolismo , Toxoplasma/metabolismo
3.
Bioorg Med Chem ; 19(7): 2211-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21419634

RESUMO

The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 µM, while this compound showed an IC(50) value of 0.81 µM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 µM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 µM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 µM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.


Assuntos
Antiprotozoários/química , Difosfonatos/química , Difosfonatos/farmacologia , Inibidores Enzimáticos/química , Geraniltranstransferase/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Chlorocebus aethiops , Difosfonatos/síntese química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/metabolismo , Terapia de Alvo Molecular , Relação Estrutura-Atividade , Toxoplasma/enzimologia , Trypanosoma cruzi/enzimologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA