Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Prosthodont ; 30(2): 128-134, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32744368

RESUMO

PURPOSE: The purpose of this study was to study the influence of high-pressure (HP) polymerization on the mechanical properties of denture base PMMA resins compared with conventional thermopolymerization and PMMA discs for digital dentures. MATERIALS AND METHODS: Three groups of blocks were prepared: Probase Hot (Ivoclar Vivadent, Lichtenstein) conventionally heat polymerized at 100°C, Probase Hot heat polymerized at 100°C under HP (200 MPa) and Ivobase CAD (Ivoclar Vivadent, Lichtenstein). Samples for mechanical/physical (n = 30) and samples for viscoelastic (n = 10) characterizations were cut from the blocks. Flexural strength (σf ), elastic modulus (Ef ), hardness, density (ρ), flexural deformation at maximal flexural stress, flexural load energy (Ur ) and viscoelastic properties (E', E'', Tanδ, Tg ) were analyzed using one-way ANOVA (α = 0.05), Scheffé multiple means comparisons (α = 0.05) and Weibull statistics (for σf ). SEM images of the fractured surfaces were obtained. RESULTS: Ef , E', E'' and density of HP polymerized Probase hot were significantly higher than conventional heat polymerized Probase Hot, whereas Tg was significantly lower and σf , Tanδ, hardness, flexural deformation at maximal flexural stress, Ur were not significantly different. The highest values for σf , flexural deformation at maximal flexural stress, Ur and Weibull modulus were obtained with Ivobase CAD. CONCLUSION: HP polymerization does not significantly increase the mechanical properties of denture base resins.


Assuntos
Bases de Dentadura , Polimetil Metacrilato , Módulo de Elasticidade , Dureza , Teste de Materiais , Maleabilidade , Polimerização , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA