Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mex Chem Soc ; 62(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214641

RESUMO

The occurrence of harmful algal blooms in nutrient-rich freshwater bodies has increased world-wide, including in the Pacific Northwest. Some cyanobacterial genera have the potential to produce secondary metabolites that are highly toxic to humans, livestock and wildlife. Reliable methods for the detection of cyanobacterial toxins with high specificity and low limits of detection are in high demand. Here we test a relatively new hybrid high resolution accurate mass quadrupole time-of-flight mass spectrometry platform (TripleTOF) for the analysis of cyanobacterial toxins in freshwater samples. We developed a new method that allows the quantitative analysis of four commonly observed microcystin congeners (LR, LA, YR, and RR) and anatoxin-a in a 6-min LC run without solid-phase enrichment. Limits of detection for the microcystin congeners (LR, LA, YR, and RR) and anatoxin-a were <5 ng/L (200-fold lower than the guideline value of 1 µg/L as maximum allowable concentration of MC-LR in drinking water). The method was applied for screening freshwaters in the Pacific Northwest during the bloom and post-bloom periods. The use of high resolution mass spectrometry and concomitant high sensitivity detection of specific fragment ions with high mass accuracy provides an integrated approach for the simultaneous identification and quantification of cyanobacterial toxins. The method is sensitive enough for detecting the toxins in single Microcystis colonies.

2.
Food Chem ; 165: 444-50, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25038697

RESUMO

Three α-ketoaldehydes, potentially present in high fructose agave syrups (HFASs) as intermediates of the Maillard reaction, were determined. A previously reported HPLC-FLD procedure based on pre-column derivatisation with 4-methoxy-o-phenylenediamine was adopted, yielding the method quantification limits 0.11 mg/kg, 0.10mg/kg, 0.09 mg/kg for glyoxal, methylglyoxal (MGo) and diacetyl, respectively. The obtained results revealed high concentrations of methylglyoxal in HFASs (average 102 ± 91 mg/kg, range 15.6-315 mg/kg) as compared to commercial Mexican bee honeys or corn syrups. Hydrogen peroxide was generated in all HFASs upon dilution, yet to less extent than in bee honeys. HFASs presented bacteriostatic activity against Bacillus subtilis and Escherichia coli; catalase addition had minimum effect on the assay results in syrups with elevated MGo. Principal component analysis revealed direct association between growth inhibition and MGo. It is concluded that elevated concentration of MGo in HFASs is at least in part responsible for their non-peroxide bacteriostatic activity.


Assuntos
Agave/química , Cromatografia Líquida de Alta Pressão/métodos , Frutose/química , Mel/análise , Animais , Abelhas
3.
Anal Biochem ; 374(2): 378-85, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18157934

RESUMO

This work has undertaken liquid chromatographic separation of nucleosides and deoxynucleosides. Two different columns with three mobile phases (A, deionized water; B, 50 mM phosphate buffer (pH 4.0); C, methanol) and slightly different gradient programs were used. The elution order was as follows: cytidine (C), 2'-deoxycytidine (dC), uridine (U), 5-methyl-2'-cytidine (5mC), 5-methyl-2'-deoxycytidine (5mdC), guanosine (G), deoxyguanosine (dG), 2'-deoxythymidine (dT), adenosine (A), and 2'-deoxyadenine (dA). Using a Luna C18 Phenomenex column (150 x 4.6 mm, 5 microm), the separation was performed at 40 degrees C with a total flow rate of 1 ml/min and a run time of 10 min. The second column was an Agilent C18 (50 x 3 mm, 1.8 microm), for which the run time was 4.5 min with a flow rate of 0.6 ml/min (25 degrees C). In application to the DNA digests from human THP-1 cells, the quantification of C, dC, U, 5mC, 5mdC, G, dG, and A was performed. The percentages of global methylation were evaluated based on the 5mdC and dC concentrations (c(5mdC) / [c(5mdC)+c(dC)], where c is concentration in microg/ml) and compared with those calculated from the respective peak areas (A(5mdC) / [A(5mdC)+A(dC)], where A is peak area at 254 nm). For peak area measurements, excellent agreement was obtained with the results reported previously in the same cell line. In the quantitative approach, the results of DNA methylation were higher but consistent with the previous data obtained using mass spectrometric detection. Comparing the analytical features of the two procedures, the use of a smaller column could be recommended because it provides efficient separation (capacity factors in the range of 1.29-10.66), a short run time, and feasibility of nucleoside and deoxynucleoside quantification in real-world samples and because it also minimizes the use of reagents.


Assuntos
DNA/química , DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/análise , Animais , Cromatografia Líquida de Alta Pressão , Desoxicitidina/metabolismo , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Espectrofotometria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA