RESUMO
The increase in the use of energy from forest biomass has increased the demand for knowledge about tree-chipping operations. Therefore, this study aimed to evaluate the effect of different drying times of wood logs and various combinations of knife and anvil configurations in the horizontal chipper on the quality of Eucalyptus dunnii chips produced for energy purposes. The study was conducted in a seven-year-old stand of E. dunnii. A horizontal chipper was used to chip whole trees and obtain nine types of chips, resulting from the interaction between the three drying times of the trees and three configurations of the horizontal chipper. The chips were characterized, followed by an evaluation of energy quality for comparison between the treatments. Among the outcomes discerned, it became evident that the employed wood exhibited a Basic Density (0.506 g.cm-³). The chip dimensions and bulk density presented notable disparities owing to the distinct chipper configurations and tree drying time. The extended drying period (150 days) conferred a lower average moisture content (34.20%) to the study materials. Moreover, the ash content was lower in the treatment with 150 drying days (0.52%). Both the useful calorific value and the Fuel Value Index were also greater in the treatment (150 drying days), measuring 2600.00 kcal kg-1 and 128.06 cal cm-3, respectively. In the analysis of the Fuel Value Index concerning chipper configurations, it was observed that for chips featuring a granulometry of 25 mm, the treatment involving 150 days of drying, four knives, and one shim proved the most efficient (Q = 0.979). Conversely, for chips with a granulometry of 16 mm, the treatment involving 150 days of drying, eight knives, and one shim emerged as the most efficient (Q = 0.970). Consequently, the proposed index is efficacious and underscores the necessity of adapting knife settings in response to moisture content changes to maintain the desired granulometry and apparent density standards.
RESUMO
Wood residues, as well as those from poultry farming, are generally disposed of irregularly, which causes damage to the environment, and thus poses a great challenge in terms of their use, a possible alternative is the manufacture of particleboards. For this, the following mechanical properties of the panels were evaluated: static bending (elasticity - MOE and rupture - MOR), internal bond strength (IB), Janka hardness (DJ), screw withdrawal resistance (SW), thickness swelling (TS), water absorption (WA), moisture, apparent density (DA) and density profile, in addition to morphological characterization by scanning electron microscope image. With the results obtained, it was possible to observe that the amount of residue influenced the density of the panel. The panel compaction ratio showed little variation (1.22-1.32), remaining close to the value considered ideal of 1.33. The percentage of waste added to the panels also influenced the increase in WA and TS, limiting the use of the panels to environments without humidity. The addition of the eggshell in the process negatively affected the mechanical characteristics of formulated particleboards, except for Janka hardness. The application of the resin together with the wood particles and eggshells can improve the mechanical properties. Based on the findings from this study, the medium-density particleboard produced can be used for making furniture and room partitioning without structural character.