Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343426

RESUMO

Tropical regions experience naturally high levels of UV radiation, but urban pollution can reduce these levels substantially. We analyzed 20 years of measurements of the UV index (UVI) at several ground-level locations in the Mexico City Metropolitan Area and compared these data with the UVI values derived from the satellite observations of ozone and clouds (but not local pollution). The ground-based measurements were systematically lower than the satellite-based estimates by ca. 40% in 2000 and 25% in 2019. Calculations with a radiative transfer model using observed concentrations of air pollutants explained well the difference between satellite and ground-based UVI and showed specific contributions from aerosols, O3, NO2, and SO2 in decreasing order of importance. Such large changes in UV radiation between 2000 and 2019 have important implications ranging from human health (skin cancer and cataract induction) to air pollution control (photochemical smog formation).

2.
Photochem Photobiol ; 78(5): 456-61, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14653576

RESUMO

Biological action spectra are commonly used to assess health and ecosystem responses to increases in spectral ultraviolet (UV) irradiances resulting from stratospheric ozone (O3) reductions. For each action spectrum, a normalized sensitivity coefficient (the radiation amplification factor [RAF]) can be calculated as the relative increase in biologically active UV irradiance for a given relative decrease in the atmospheric O3 column amount. We use a detailed radiative transfer model to calculate the dependence of RAF on the O3 column amount and the solar zenith angle (and, therefore, implicitly on latitude and season) for several commonly used action spectra. A simple analytical model is used to interpret the results in terms of the semilogarithmic slope of the action spectra in the UV-B and UV-A wavelength ranges. We also show that RAF may be overestimated substantially if the UV-A portion of an action spectrum is significant but is neglected. This is illustrated using several idealized action spectra as well as published action spectra for plant responses to UV irradiation. Generally, if the portion of an action spectrum measured longward of approximately 300 nm spans less than about two orders in magnitude in its sensitivity, significant errors in the estimated RAF may ensue, and the use of this action spectrum in O3-related studies can be compromised.


Assuntos
Ozônio/química , Raios Ultravioleta , Atmosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA