Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543466

RESUMO

Conventional methods for pathogen detection in water rely on time-consuming enrichment steps followed by biochemical identification strategies, which require assay times ranging from 24 hours to a week. However, in recent years, significant efforts have been made to develop biosensing technologies enabling rapid and close-to-real-time detection of waterborne pathogens. In previous studies, we developed a plastic optical fiber (POF) immunosensor using an optoelectronic configuration consisting of a U-Shape probe connected to an LED and a photodetector. Bacterial detection was evaluated with the immunosensor immersed in a bacterial suspension in water with a known concentration. Here, we report on the sensitivity of a new optoelectronic configuration consisting of two POF U-shaped probes, one as the reference and the other as the immunosensor, for the detection of Escherichia coli. In addition, another methos of detection was tested where the sensors were calibrated in the air, before being immersed in a bacterial suspension and then read in the air. This modification improved sensor sensitivity and resulted in a faster detection time. After the immunocapture, the sensors were DAPI-stained and submitted to confocal microscopy. The histograms obtained confirmed that the responses of the immunosensors were due to the bacteria. This new sensor detected the presence of E. coli at 104 CFU/mL in less than 20 min. Currently, sub-20 min is faster than previous studies using fiber-optic based biosensors. We report on an inexpensive and faster detection technology when compared with conventional methods.

2.
Plants (Basel) ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176954

RESUMO

Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.

3.
Life (Basel) ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36294926

RESUMO

Multidrug-resistant bacteria are of critical importance and a problem for human health and food preservation; the discovery of new antimicrobial substances to control their proliferation is part of the solution. This work reports on 57 antagonistic Aeromonas strains, of which 38 strains were antagonistic towards problematic human pathogens. The genome of the most antagonistic strain was sequenced and identified as Aeromonas allosaccharophila. Its genome was fully annotated and mined for genes that might explain that activity. Strain AE59-TE was antagonistic toward clinically relevant gram-negative and gram-positive multidrug-resistant bacteria, including Klebsiella pneumoniae KPC, Escherichia coli ESBL, Salmonella typhimurium, and Staphylococcus aureus MRSA. Strain AE59-TE2 was identified by multilocus sequence analysis. Genome mining identified four genes homologous to the bacteriocin, zoocin A from Streptococcus equi and a gene 98% similar to cvpA linked to colicin V production. A. allosaccharophila strain AE59-TE2 produced antimicrobial activity against a broad range of bacteria, including important gram-negative bacteria, not typically targeted by bacteriocins. Herewere described novel zoocin genes that are promising for industrial applications in the food and health sectors. Interesting and important antagonistic activity is described combined with the first detailed genomic analysis of the species Aeromonas allosaccharophila.

4.
Microbiol Resour Announc ; 11(4): e0110521, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35343769

RESUMO

Brucella intermedia/Ochrobactrum intermedium strain DF13 was isolated from Brazilian soil and is able to degrade 2,4-dichlorophenoxyacetic acid (2,4-D). Here, we report on its genome sequence, with 4,570,268 bp and a 57.8% G+C content.

5.
Microbiol Resour Announc ; 11(3): e0110421, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35225675

RESUMO

Enterobacter hormaechei strain MG02 was isolated from a mixed culture collected from soil with a history of pesticide application. This strain degrades 2,4-dichlorophenoxyacetic acid (2,4-D). Here, we report on its genome, which has 4,923,875 bp and 55.4% G+C content.

6.
Microorganisms ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677325

RESUMO

Microalgae are regarded as a promising source of biodiesel. In contrast with conventional crops currently used to produce commercial biodiesel, microalgae can be cultivated on non-arable land, besides having a higher growth rate and productivity. However, microalgal biodiesel is not yet regarded as economically competitive, compared to fossil fuels and crop-based biodiesel; therefore, it is not commercially produced. This review provides an overall perspective on technologies with the potential to increase efficiency and reduce the general costs of biodiesel production from microalgae. Opportunities and challenges for large-scale production are discussed. We present the current scenario of Brazilian research in the field and show a successful case in the research and development of microalgal biodiesel in open ponds by Petrobras. This publicly held Brazilian corporation has been investing in research in this sector for over a decade.

7.
Microbiol Resour Announc ; 10(48): e0073121, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854719

RESUMO

Pseudomonas sp. strain LAP_36 was isolated from rhizosphere soil from Deschampsia antarctica on King George Island, South Shetland Islands, Antarctica. Here, we report on its draft genome sequence, which consists of 8,794,771 bp with 60.0% GC content and 8,011 protein-coding genes.

8.
Sci Rep ; 11(1): 20311, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645885

RESUMO

Sulphate-reducing bacteria (SRB) cause fouling, souring, corrosion and produce H2S during oil and gas production. Produced water obtained from Periquito (PQO) and Galo de Campina (GC) onshore oilfields in Brazil was investigated for SRB. Produced water with Postgate B, Postgate C and Baars media was incubated anaerobically for 20 days. DNA was extracted, 16S rDNA PCR amplified and fragments were sequenced using Illumina TruSeq. 4.2 million sequence reads were analysed and deposited at NCBI SAR accession number SRP149784. No significant differences in microbial community composition could be attributed to the different media but significant differences in the SRB were observed between the two oil fields. The dominant bacterial orders detected from both oilfields were Desulfovibrionales, Pseudomonadales and Enterobacteriales. The genus Pseudomonas was found predominantly in the GC oilfield and Pleomorphominas and Shewanella were features of the PQO oilfield. 11% and 7.6% of the sequences at GC and PQO were not classified at the genus level but could be partially identified at the order level. Relative abundances changed for Desulfovibrio from 29.8% at PQO to 16.1% at GC. Clostridium varied from 2.8% at PQO and 2.4% at GC. These data provide the first description of SRB from onshore produced water in Brazil and reinforce the importance of Desulfovibrionales, Pseudomonadales, and Enterobacteriales in produced water globally. Identifying potentially harmful microbes is an important first step in developing microbial solutions that prevent their proliferation.


Assuntos
Microbiota , Campos de Petróleo e Gás , Sulfatos/química , Microbiologia da Água , Biodiversidade , Biofilmes , Biotecnologia , Brasil , DNA Ribossômico/metabolismo , Bases de Dados Genéticas , Desulfovibrionales/genética , Ecologia , Enterobacteriaceae/genética , Gammaproteobacteria/genética , Geografia , Sulfeto de Hidrogênio/química , RNA Ribossômico 16S/genética , Água
9.
Sci Adv ; 7(33)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34389536

RESUMO

Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed "post-heat stress disorder" was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.


Assuntos
Antozoários , Transtornos de Estresse por Calor , Microbiota , Animais , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico/genética , Simbiose
10.
Braz J Microbiol ; 52(2): 727-738, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694059

RESUMO

Azo dyes are widely used in the textile industry due to their resistance to light, moisture, and oxidants. They are also an important class of environmental contaminant because of the amount of dye that reaches natural water resources and because they can be toxic, mutagenic, and carcinogenic. Different technologies are used for the decolorization of wastewater containing dyes; among them, the biological processes are the most promising environmentally. The aim of this study was to evaluate the potential of Phanerochaete chrysosporium strain ME-446 to safely decolorize three azo dyes: Direct Yellow 27 (DY27), Reactive Black 5 (RB5), and Reactive Red 120 (RR120). Decolorization efficiency was determined by ultraviolet-visible spectrophotometry and the phytotoxicity of the solutions before and after the fungal treatment was analyzed using Lactuca sativa seeds. P. chrysosporium ME-446 was highly efficient in decolorizing DY27, RB5, and RR120 at 50 mg L-1, decreasing their colors by 82%, 89%, and 94% within 10 days. Removal of dyes was achieved through adsorption on the fungal mycelium as well as biodegradation, inferred by the changes in the dyes' spectral peaks. The intensive decolorization of DY27 and RB5 corresponded to a decrease in phytotoxicity. However, phytotoxicity increased during the removal of color for the dye RR120. The ecotoxicity tests showed that the absence of color does not necessarily translate to an absence of toxicity.


Assuntos
Compostos Azo/metabolismo , Phanerochaete/metabolismo , Poluentes Químicos da Água/metabolismo , Compostos Azo/toxicidade , Biodegradação Ambiental , Fermentação , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Micélio/metabolismo , Naftalenos/metabolismo , Naftalenos/toxicidade , Naftalenossulfonatos/metabolismo , Naftalenossulfonatos/toxicidade , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/toxicidade
11.
Mar Pollut Bull ; 139: 181-188, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686417

RESUMO

Mangroves are ecosystems located in tropical and subtropical regions of the world and are vital for coastal protection. Their unique characteristics make them hotspots for carbon cycling and biological diversity. Studies on isolated filamentous fungi and environmental and anthropogenic factors that influence sediments offer new understandings on how to preserve mangroves. Here we report on the filamentous fungi isolated from four mangroves. We correlated fungal community composition with sediment texture, polycyclic aromatic hydrocarbons concentration (oil pollution), pH, salinity, organic matter, total and thermotolerant coliforms (sewage pollution). In total we identified 34 genera and 97 species. The most polluted sites had highest species richness whereas the best preserved site showed the lowest species richness. Oil spill and sewage pollution were identified as the drivers of fungal community composition in the most polluted sites. We found very distinct fungal communities with no >5 species shared between any two mangrove sites.


Assuntos
Monitoramento Ambiental/métodos , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Áreas Alagadas , Baías/química , Baías/microbiologia , Biodiversidade , Brasil , Fungos/classificação , Sedimentos Geológicos/química
12.
Int J Syst Evol Microbiol ; 67(12): 5211-5215, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29087276

RESUMO

A novel streptomycete, strain 594T, isolated from Brazilian soil collected under cerrado (savanna) vegetation cover is described. Strain 594T produced thermophilic chitinolytic proteases in assays containing feather meal and corn steep liquor as sole sources of carbon and nitrogen. The strain produced white to grey aerial mycelium and spiral chains of spiny-surfaced spores on the aerial mycelium and did not produce diffusible pigments. The ll-isomer of diaminopimelic acid was present in the cell wall and menaquinones were predominantly MK-9(H6) (52 %) and MK-9(H8) (30 %) with 6 % MK-9(H4) and slightly less than 1 % MK-9(H2). Polar lipids present were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown phospholipid. The major fatty acids were anteiso-C15 : 0, anteiso-C16 : 0, anteiso-C14 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 70.4 mol%. Phylogenetic analysis of the nearly complete 16S rRNA gene sequence indicated that it differed from described Streptomyces species. Multilocus sequence analysis (MLSA) using five housekeeping genes (atpD, gyrB, rpoB, recA and trpB) comparing Streptomyces type strains showed that the MLSA distance of strain 594T to the most closely related species was greater than the 0.007 threshold. The in silico DNA-DNA relatedness between the genome sequence of strain 594T and that of the phylogenetically nearest species was well below the species level recommendation. There was thus multiple evidence justifying the description of this strain as representing a novel species, for which the name Streptomyces odonnellii sp. nov. is proposed. The type strain is 594T (=IMPPG 594T=DSM 41949T=NRRL B-24891T).


Assuntos
Pradaria , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Biomed Res Int ; 2013: 584207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23586048

RESUMO

Streptomyces misionensis strain PESB-25 was screened and selected for its ability to secrete cellulases. Cells were grown in a liquid medium containing sugarcane bagasse (SCB) as carbon source and corn steep liquor (CSL) as nitrogen source, whose concentrations were optimized using response surface methodology (RSM). A peak of endoglucanase accumulation (1.01 U · mL(-1)) was observed in a medium with SCB 1.0% (w/v) and CSL 1.2% (w/v) within three days of cultivation. S. misionensis PESB-25 endoglucanase activity was thermoacidophilic with optimum pH and temperature range of 3.0 to 3.6 and 62° to 70 °C, respectively. In these conditions, values of 1.54 U mL(-1) of endoglucanase activity were observed. Moreover, Mn(2+) was demonstrated to have a hyperactivating effect on the enzyme. In the presence of MnSO4 (8 mM), the enzyme activity increased threefold, up to 4.34 U · mL(-1). Mn(2+) also improved endoglucanase stability as the catalyst retained almost full activity upon incubation at 50 °C for 4 h, while in the absence of Mn(2+), enzyme activity decreased by 50% in this same period. Three protein bands with endoglucanase activity and apparent molecular masses of 12, 48.5 and 119.5 kDa were detected by zymogram.


Assuntos
Carbono/metabolismo , Celulase/metabolismo , Nitrogênio/metabolismo , Streptomyces/enzimologia , Celulose/química , Meios de Cultura , Estabilidade Enzimática , Fermentação , Concentração de Íons de Hidrogênio , Saccharum/química , Streptomyces/química , Streptomyces/metabolismo , Temperatura , Zea mays/química
14.
Biomed Res Int ; 2013: 309769, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484107

RESUMO

Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.


Assuntos
Anti-Infecciosos/metabolismo , Bacillus/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Desulfovibrio/fisiologia , Streptomyces/metabolismo , Corrosão
15.
Antonie Van Leeuwenhoek ; 103(3): 635-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23142860

RESUMO

The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of α/ß-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the α/ß-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epoxide hydrolases, (iv) haloacid dehalogenases, (v) C-C breaking enzymes and (vi) serine peptidases. The high number of lipases/esterases (41) and epoxide hydrolase enzymes (14) present in the relatively small (3.6 Mb) P4 genome is unusual; it is likely to be linked to the survival of strain P4 in its natural environment. Strain P4 is thus equipped with a large number of genes which would appear to confer survivability in harsh hot tropical soil. As such, this highly resilient soil bacterial strain provides an interesting genome for enzyme mining for applications in the field of biotransformations of polymeric compounds.


Assuntos
Actinomycetales/enzimologia , Bacillus anthracis/genética , Biotecnologia/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Hidrolases/metabolismo , Actinomycetales/genética , Bacillus anthracis/isolamento & purificação , Genoma Bacteriano , Hidrolases/classificação , Hidrolases/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Braz. j. microbiol ; Braz. j. microbiol;43(4): 1242-1254, Oct.-Dec. 2012.
Artigo em Inglês | LILACS | ID: lil-665805

RESUMO

The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems.


Assuntos
Humanos , Biodiversidade , Costa/legislação & jurisprudência , Ecossistema , Legislação Ambiental , Áreas Alagadas/legislação & jurisprudência , Ecologia , Metodologia como Assunto , Natureza
17.
Braz. J. Microbiol. ; 43(4): 1242-1254, Oct.-Dec. 2012.
Artigo em Inglês | VETINDEX | ID: vti-2159

RESUMO

The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems.(AU)


Assuntos
Áreas Alagadas/legislação & jurisprudência , Política Ambiental/legislação & jurisprudência , Biodiversidade , Fungos/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento
18.
J Microbiol ; 50(5): 798-806, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23124748

RESUMO

Control of plant pathogen Sclerotinia sclerotiorum is an ongoing challenge because of its wide host range and the persistence of its sclerotia in soil. Fungicides are the most commonly used method to control this fungus but these can have ecotoxicity impacts. Chitinolytic Streptomyces strains isolated from Brazilian tropical soils were capable of inhibiting S. sclerotiorum growth in vitro, offering new possibilities for integrated pest management and biocontrol, with a new approach to dealing with an old problem. Strain Streptomyces sp. 80 was capable of irreversibly inhibiting fungal growth. Compared to other strains, its crude enzymes had the highest chitinolytic levels when measured at 25°C and strongly inhibited sclerotia from S. sclerotiorum. It produced four hydrolytic enzymes involved in fungal cell wall degradation when cultured in presence of the fungal mycelium. The best production, obtained after three days, was 0.75 U/ml for exochitinase, 0.9 U/ml for endochitinase, 0.16 U/ml for glucanase, and 1.78 U/ml for peptidase. Zymogram analysis confirmed two hydrolytic bands of chitinolytic activity with apparent molecular masses of 45.8 and 206.8 kDa. One glucanase activity with an apparent molecular mass of 55 kDa was also recorded, as well as seven bands of peptidase activity with apparent molecular masses ranging from 15.5 to 108.4 kDa. Differential interference contrast microscopy also showed alterations of hyphal morphology after co-culture. Streptomyces sp. 80 seems to be promising as a biocontrol agent against S. sclerotiorum, contributing to the development of new methods for controlling plant diseases and reducing the negative impact of using fungicides.


Assuntos
Ascomicetos/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Doenças das Plantas/microbiologia , Streptomyces/enzimologia , Streptomyces/isolamento & purificação , Ascomicetos/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Brasil , Parede Celular/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Dados de Sequência Molecular , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/genética
19.
Braz J Microbiol ; 43(4): 1242-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031949

RESUMO

The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems.

20.
Antonie Van Leeuwenhoek ; 100(3): 341-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21614495

RESUMO

A novel yeast species within the Metschnikowiaceae is described based on a strain from the sugarcane (Saccharum sp.) rhizoplane of an organically managed farm in Rio de Janeiro, Brazil. The D1/D2 domain of the large subunit ribosomal RNA gene sequence analysis showed that the closest related species were Candida tsuchiyae with 86.2% and Candida thailandica with 86.7% of sequence identity. All three are anamorphs in the Clavispora opuntiae clade. The name Candida middelhoveniana sp. nov. is proposed to accommodate this highly divergent organism with the type strain Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (IMUFRJ) 51965(T) (=Centraalbureau voor Schimmelcultures (CBS) 12306(T), Universidade Federal de Minas Gerais (UFMG)-70(T), DBVPG 8031(T)) and the GenBank/EMBL/DDBJ accession number for the D1/D2 domain LSU rDNA sequence is FN428871. The Mycobank deposit number is MB 519801.


Assuntos
Candida/classificação , Candida/isolamento & purificação , Saccharum/microbiologia , Microbiologia do Solo , Brasil , Candida/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Agricultura Orgânica , Filogenia , Saccharum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA