Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 26(10): 6195-6207, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35670863

RESUMO

OBJECTIVES: Evaluate the ability of current ion-releasing materials to remineralise bacteria-driven artificial caries lesions. MATERIALS AND METHODS: Standardised class I cavities were obtained in 60 extracted human molars. Specimens underwent a microbiological cariogenic protocol (28 days) to generate artificial caries lesions and then were randomly divided into four restorative groups: adhesive + composite (negative control); glass ionomer cement (GIC); calcium silicate cement (MTA); and resin-modified calcium silicate cement (RMTA). Microhardness analysis (ΔKHN) was performed on 40 specimens (10/group, t = 30 days, 45 days, 60 days in artificial saliva, AS). Micro-CT scans were acquired (3/group, t = 0 days, 30 days, and 90 days in AS). Confocal microscopy was employed for interfacial ultra-morphology analysis (2/group, t = 0 days and 60 days in AS). Additional specimens were prepared and processed for scanning electron microscopy (SEM) and FTIR (n = 3/group + control) to analyse the ability of the tested materials to induce apatite formation on totally demineralised dentine discs (60 days in AS). Statistical analyses were performed with a significance level of 5%. RESULTS: Adhesive + composite specimens showed the lowest ΔKHN values and the presence of gaps at the interface when assessed through micro-CT even after storage in AS. Conversely, all the tested ion-releasing materials presented an increase in ΔKHN after storage (p < 0.05), while MTA best reduced the demineralised artificial carious lesions gap at the interface. MTA and RMTA also showed apatite deposition on totally demineralised dentine surfaces (SEM and FTIR). CONCLUSIONS: All tested ion-releasing materials expressed mineral precipitation in demineralised dentine. Additionally, calcium silicate-based materials induced apatite precipitation and hardness recovery of artificial carious dentine lesions over time. CLINICAL RELEVANCE: Current ion-releasing materials can induce remineralisation of carious dentine. MTA shows enhanced ability of nucleation/precipitation of hydroxyapatite compared to RMTA and GIC, which may be more appropriate to recover severe mineral-depleted dentine.


Assuntos
Cárie Dentária , Dentina , Humanos , Apatitas , Compostos de Cálcio , Cárie Dentária/patologia , Cárie Dentária/terapia , Dentina/química , Cimentos de Ionômeros de Vidro , Hidroxiapatitas , Teste de Materiais , Minerais/análise , Cimentos de Resina , Saliva Artificial , Silicatos
2.
Clin Oral Investig ; 26(6): 4391-4405, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35149904

RESUMO

OBJECTIVES: This study aimed at evaluating the microtensile bond strength (µTBS) and the resin-dentine ultramorphology (24 h and 10 months ageing) of contemporary universal adhesives applied in self-etch (SE) or etch-and-rinse (ER) mode. MATERIALS AND METHODS: Sixty-four sound human molars were collected and randomly allocated in 4 main experimental groups (n = 16) according to the adhesive system employed and subsequently divided into two subgroups depending on their application mode SE or ER (n = 8): ZipBond X (ZBX-SE; ZBX-ER), Prime and Bond Active (PBA-SE; PBA-ER), Clearfil Universal Bond Quick (CBQ-SE; CBQ-ER) or Scotchbond Universal (SCH-SE; SCH-ER). The specimens were cut into sticks with a cross-sectional area of approximately 0.9 mm2 and subjected to µTBS testing at 24 h or after 10 months of ageing in artificial saliva (AS). Five representative fractured specimens from each group were analysed using field-emission scanning electron microscopy (FE-SEM). Resin-dentine slabs (Ø 0.9mm2) from each experimental group were immersed in Rhodamine B and subsequently analysed using confocal microscopy analysis (CLSM). The µTBS results were analysed using a two-way ANOVA and Newman-Keuls multiple-comparison test (α = 0.05). RESULTS: ZBX, PBA and SCH exhibited greater µTBS values than CQB at 24 h in both SE and ER modes (p < 0.05). CQB showed a significant decrease in µTBS values after ageing both when used in SE and ER mode (p < 0.05). ZBX-ER exhibited no significant differences in the µTBS test after ageing (p > 0.05), while a significant drop in µTBS was seen in SCH-ER and APB-ER after 10-month ageing (p < 0.05). Clear signs of degradation were evident in the resin-dentine interface created with CQB regardless of the application mode or the ageing time. In APB-ER and SCH-ER groups, such signs of degradation were evident after ageing in AS. ZBX showed slight dye infiltration both when used in ER and SE mode. CONCLUSIONS: The long-term bonding performance of modern universal adhesives is usually influenced by the adhesive strategy employed; self-etching application should be prioritised during dentine bonding. Moreover, the use of shortened bonding protocols may compromise the quality of the resin-dentine interface and the bonding performance of most modern universal adhesives. CLINICAL RELEVANCE: The use of etch-and-rinse bonding procedures, as well as "shortened" application protocols should be eluded when using modern universal adhesives in dentine. However, new generation universal adhesives based on innovative chemical formulations may probably allow clinicians to achieve long-term bonding performance with such simplified system also when employed in ER mode.


Assuntos
Colagem Dentária , Adesivos Dentinários , Condicionamento Ácido do Dente/métodos , Adesivos/análise , Resinas Compostas/química , Colagem Dentária/métodos , Cimentos Dentários/química , Dentina/química , Adesivos Dentinários/química , Humanos , Teste de Materiais , Metacrilatos/química , Cimentos de Resina/química , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA