Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Clinics (Sao Paulo) ; 79: 100422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38972247

RESUMO

OBJECTIVE: Cancer genomics and transcriptomics studies have provided a large volume of data that enables to test of hypotheses based on real data from cancer patients. Ezrin (encoded by the EZR gene) is a highly expressed protein in cancer that contributes to linking the actin cytoskeleton to the cell membrane and signal transduction pathways involved in oncogenesis and disease progression. NSC305787 is a pharmacological ezrin inhibitor with potential antineoplastic effects. In the present study, the authors prospected EZR mRNA levels in a pan-cancer analysis and identified potential cancers that could benefit from anti-EZR therapies. METHODS: This study analyzed TCGA data for 32 cancer types, emphasizing cervical squamous cell carcinoma and stomach adenocarcinoma. It investigated the impact of EZR transcript levels on clinical outcomes and identified differentially expressed genes. Cell lines were treated with NSC305787, and its effects were assessed through various cellular and molecular assays. RESULTS: EZR mRNA levels are highly expressed, and their expression is associated with biologically relevant molecular processes in cervical squamous carcinoma and stomach adenocarcinoma. In cellular models of cervical and gastric cancer, NSC305787 reduces cell viability and clonal growth (p < 0.05). Molecular analyses indicate that the pharmacological inhibition of EZR induces molecular markers of cell death and DNA damage, in addition, to promoting the expression of genes associated with apoptosis and inhibiting the expression of genes related to survival and proliferation. CONCLUSION: The present findings provide promising evidence that ezrin may be a molecular target in the treatment of cervical and gastric carcinoma.


Assuntos
Adenocarcinoma , Proteínas do Citoesqueleto , Perfilação da Expressão Gênica , Neoplasias Gástricas , Neoplasias do Colo do Útero , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteínas do Citoesqueleto/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Feminino , Adenocarcinoma/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética
2.
Beilstein J Org Chem ; 20: 1167-1178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887581

RESUMO

We describe the use of bismuth(III) triflate as an efficient and environmentally friendly catalyst for the Nazarov reaction of aryl vinyl ketones, leading to the synthesis of 3-aryl-2-ethoxycarbonyl-1-indanones and 3-aryl-1-indanones. By changing the temperature and reaction time, it was possible to modulate the reactivity, allowing the synthesis of two distinct product classes (3-aryl-2-ethoxycarbonyl-1-indanones and 3-aryl-1-indanones) in good to excellent yield. The reaction did not require additives and was insensitive to both air and moisture. Preliminary biological evaluation of some indanones showed a promising profile against some human cancer line cells.

3.
Toxicol In Vitro ; 99: 105856, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821378

RESUMO

Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.


Assuntos
Antineoplásicos , Apoptose , Sobrevivência Celular , Indóis , Leucemia , Moduladores de Tubulina , Humanos , Leucemia/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Indóis/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Dano ao DNA/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38523043

RESUMO

Multiple myeloma (MM) is a prevalent hematological malignancy with high recurrence and no definitive cure. The current study revisits the role of the IGF1/IGF1R axis in MM, introducing a novel inhibitor, NT157. The IGF1/IGF1R pathway is pivotal in MM, influencing cell survival, proliferation, and migration and impacting patient survival outcomes. NT157 targets intracellular proteins such as IRS and STAT proteins and demonstrates antineoplastic potential in hematological malignancies and solid tumors. In the present study, we assessed IGF1R signaling-related gene expression in MM patients and healthy donors, unveiling significant distinctions. MM cell lines displayed varying expression patterns of IGF1R-related proteins. A gene dependence analysis indicated the importance of targeting receptor and intracellular elements over autocrine IGF1. NT157 exhibited inhibitory effects on MM cell viability, clonal growth, cell cycle progression, and survival. Moreover, NT157 reduced IRS2 expression and STAT3, STAT5, and RPS6 activation and modulated oncogenes and tumor suppressors, fostering a tumor-suppressive molecular profile. In summary, our study demonstrates that the IGF1/IGF1R/IRS signaling axis is differentially activated in MM cells and the NT157's capacity to modulate crucial molecular targets, promoting antiproliferative effects and apoptosis in MM cells. NT157 may offer a multifaceted approach to enhance MM therapy.

6.
Hematol Transfus Cell Ther ; 46(3): 273-282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38326180

RESUMO

Myeloid neoplasms result from molecular alterations in hematopoietic stem cells, with acute myeloid leukemia (AML) being one of the most aggressive and with a poor prognosis. Hematopoietic cell kinase (HCK) is a proto-oncogene that encodes a protein-tyrosine kinase of the Scr family, and it is highly expressed in AML. The present study investigated HCK expression in normal hematopoietic cells across myeloid differentiation stages and myeloid neoplasm patients. Within the AML cohort, we explored the impact of HCK expression on clinical outcomes and its correlation with clinical, genetic, and laboratory characteristics. Furthermore, we evaluated the association between HCK expression and the response to antineoplastic agents using ex vivo assay data from AML patients. HCK expression is higher in differentiated subpopulations of myeloid cells. High HCK expression was observed in patients with chronic myelomonocytic leukemia, chronic myeloid leukemia, and AML. In patients with AML, high levels of HCK negatively impacted overall and disease-free survival. High HCK expression was also associated with worse molecular risk groups and white blood cell count; however, it was not an independent prognostic factor. In functional genomic analyses, high HCK expression was associated with several biological and molecular processes relevant to leukemogenesis. HCK expression was also associated with sensitivity and resistance to several drugs currently used in the clinic. In conclusion, our analysis confirmed the differential expression of HCK in myeloid neoplasms and its potential association with unfavorable molecular risks in AML. We also provide new insights into HCK biological functions, prognosis, and response to antineoplastic agents.

8.
Antioxid Redox Signal ; 40(4-6): 250-271, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37597204

RESUMO

Significance: Cancer is a complex and heterotypic structure with a spatial organization that contributes to challenges in therapeutics. Enzymes associated with producing the gasotransmitter hydrogen sulfide (H2S) are differentially expressed in tumors. Indeed, critical and paradoxical roles have been attributed to H2S in cancer-promoting characteristics by targeting both cancer cells and their milieu. This review focuses on the evidence and knowledge gaps of H2S on the tumor redox microenvironment and the pharmacological effects of H2S donors on cancer biology. Recent Advances: Endogenous and pharmacological concentrations of H2S evoke different effects on the same cell type: physiological H2S concentrations have been associated with tumor development and progression. In contrast, pharmacological concentrations have been associated with anticancer effects. Critical Issues: The exact threshold between the promotion and inhibition of tumorigenesis by H2S is largely unknown. The main issues covered in this review include H2S-modulated signaling pathways that are critical for cancer cells, the potential effects of H2S on cellular components of the tumor microenvironment, temporal modulation of H2S in promoting or inhibiting tumor progression (similar to observed for inflammation), and pharmacological agents that modulate H2S and which could play a role in antineoplastic therapy. Future Directions: Given the complexity and heterogeneity of tumor composition, mechanistic studies on context-dependent pharmacological effects of H2S donors for cancer therapy are necessary. These studies must determine the critical signaling pathways and the cellular components involved to allow advances in the rational use of H2S donors as antineoplastic agents. Antioxid. Redox Signal. 40, 250-271.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Neoplasias , Humanos , Sulfeto de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Gasotransmissores/metabolismo , Transdução de Sinais , Carcinogênese , Microambiente Tumoral
9.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839173

RESUMO

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Assuntos
Antineoplásicos , Aurora Quinase A , Humanos , Aurora Quinase A/metabolismo , Quinazolinas/farmacologia , Organofosfatos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores de Fator Estimulador de Colônias
10.
Clinics ; Clinics;79: 100422, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1569151

RESUMO

Abstract Objective: Cancer genomics and transcriptomics studies have provided a large volume of data that enables to test of hypotheses based on real data from cancer patients. Ezrin (encoded by the EZR gene) is a highly expressed protein in cancer that contributes to linking the actin cytoskeleton to the cell membrane and signal transduction pathways involved in oncogenesis and disease progression. NSC305787 is a pharmacological ezrin inhibitor with potential antineoplastic effects. In the present study, the authors prospected EZR mRNA levels in a pan-cancer analysis and identified potential cancers that could benefit from anti-EZR therapies. Methods: This study analyzed TCGA data for 32 cancer types, emphasizing cervical squamous cell carcinoma and stomach adenocarcinoma. It investigated the impact of EZR transcript levels on clinical outcomes and identified differentially expressed genes. Cell lines were treated with NSC305787, and its effects were assessed through various cellular and molecular assays. Results: EZR mRNA levels are highly expressed, and their expression is associated with biologically relevant molecular processes in cervical squamous carcinoma and stomach adenocarcinoma. In cellular models of cervical and gastric cancer, NSC305787 reduces cell viability and clonal growth (p < 0.05). Molecular analyses indicate that the pharmacological inhibition of EZR induces molecular markers of cell death and DNA damage, in addition, to promoting the expression of genes associated with apoptosis and inhibiting the expression of genes related to survival and proliferation. Conclusion: The present findings provide promising evidence that ezrin may be a molecular target in the treatment of cervical and gastric carcinoma.

11.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069220

RESUMO

Phosphatidylinositol-5-phosphate 4-kinase type 2 (PIP4K2) protein family members (PIP4K2A, PIP4K2B, and PIP4K2C) participate in the generation of PIP4,5P2, which acts as a secondary messenger in signal transduction, a substrate for metabolic processes, and has structural functions. In patients with acute myeloid leukemia (AML), high PIP4K2A and PIP4K2C levels are independent markers of a worse prognosis. Recently, our research group reported that THZ-P1-2 (PIP4K2 pan-inhibitor) exhibits anti-leukemic activity by disrupting mitochondrial homeostasis and autophagy in AML models. In the present study, we characterized the expression of PIP4K2 in the myeloid compartment of hematopoietic cells, as well as in AML cell lines and clinical samples with different genetic abnormalities. In ex vivo assays, PIP4K2 expression levels were related to sensitivity and resistance to several antileukemia drugs and highlighted the association between high PIP4K2A levels and resistance to venetoclax. The combination of THZ-P1-2 and venetoclax showed potentiating effects in reducing viability and inducing apoptosis in AML cells. A combined treatment differentially modulated multiple genes, including TAp73, BCL2, MCL1, and BCL2A1. In summary, our study identified the correlation between the expression of PIP4K2 and the response to antineoplastic agents in ex vivo assays in AML and exposed vulnerabilities that may be exploited in combined therapies, which could result in better therapeutic responses.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/farmacologia
13.
Cancers (Basel) ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37568682

RESUMO

Significant advances in understanding the molecular complexity of the development and progression of pancreatic cancer have been made, but this disease is still considered one of the most lethal human cancers and needs new therapeutic options. In the present study, the antineoplastic effects of AD80, a multikinase inhibitor, were investigated in models of pancreatic cancer. AD80 reduced cell viability and clonogenicity and induced polyploidy in pancreatic cancer cells. At the molecular level, AD80 reduced RPS6 and histone H3 phosphorylation and induced γH2AX and PARP1 cleavage. Additionally, the drug markedly decreased AURKA phosphorylation and expression. In PANC-1 cells, AD80 strongly induced autophagic flux (consumption of LC3B and SQSTM1/p62). AD80 modulated 32 out of 84 autophagy-related genes and was associated with vacuole organization, macroautophagy, response to starvation, cellular response to nitrogen levels, and cellular response to extracellular stimulus. In 3D pancreatic cancer models, AD80 also effectively reduced growth independent of anchorage and cell viability. In summary, AD80 induces mitotic aberrations, DNA damage, autophagy, and apoptosis in pancreatic cancer cells. Our exploratory study establishes novel targets underlying the antineoplastic activity of the drug and provides insights into the development of therapeutic strategies for this disease.

15.
Chem Biol Interact ; 371: 110342, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634904

RESUMO

DNA-targeting agents have a significant clinical use, although toxicity remains an issue that plays against their widespread application. Understanding the mechanism of action and DNA damage response elicited by such compounds might contribute to the improvement of their use in anticancer chemotherapy. In a previous study, our research group characterized a new DNA-targeting agent - pradimicin-IRD. Since DNA-targeting agents and DNA repair are close-related subjects, the present study used in silico-modelling and a transcriptomic approach seeking to characterize the DNA repair pathways activated in HCT 116 cells following pradimicin-IRD treatment. Molecular docking analysis showed pradimicin-IRD as a DNA intercalating agent and a potential inhibitor of DNA-binding proteins. Furthermore, the transcriptomic study highlighted DNA repair functions related to genes modulated by pradimicin-IRD, such as nucleotide excision repair, telomeres maintenance and double-strand break repair. When validating these functions, PCNA protein levels decreased after exposure to pradimicin. Furthermore, molecular docking analysis suggested DNA-pradimicin-PCNA interaction. In addition, hTERT and POLH showed reduced mRNA levels after 6 h of treatment with pradimicin-IRD. Moreover, POLH-deficient cells displayed higher resistance to pradimicin-IRD than POLH-proficient cells and the compound prevented formation of the POLH/DNA complex (molecular docking). Since the modulation of DNA repair genes by pradimicin-IRD is TP53-independent, unlike doxorubicin, dissimilarities between the mechanism of action and the DNA damage response of pradimicin-IRD and doxorubicin open new insights for further studies of pradimicin-IRD as a new antineoplastic compound.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Antígeno Nuclear de Célula em Proliferação , Antineoplásicos/farmacologia , Reparo do DNA , DNA , Doxorrubicina/farmacologia , Dano ao DNA
16.
Int J Pharm ; 633: 122612, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642349

RESUMO

This study evaluated the potential of monoolein (MO)-based nanodispersions to promote the cutaneous co-delivery of metformin (MET) and methylene blue (MB) for the treatment of non-melanoma skin cancer. MO-based nanodispersions were obtained using Kolliphor® P407 (KP) and/or sodium cholate (CH), and characterized concerning the structure, thermal stability, ability to disrupt the skin barrier, cutaneous permeation and retention of MB and MET. Additionally, the cytotoxic effect of MO nanodispersions-mediated combination therapy using MET and MB in A431 cells was evaluated. The nanodispersions exhibited nanometric size (<200 nm) and thermal and physical stability. Small angle X-ray scattering studies revealed multiple structures depending on composition. They were able to interact with stratum corneum lipid structure, increasing its fluidity. The effect of MO-nanodispersions on topical/transdermal delivery of MB and MET was composition-dependent. Nanodispersions with low MO content (5 %) and stabilized with KP and CH (0.05-0.10 %) were the most promising, enhancing the cutaneous delivery of MB and MET by 1.9 to 2.2-fold and 1.4 to 1.7-fold, respectively, compared to control. Cytotoxic studies revealed that the most promising MO nanodispersion-mediated combination therapy using MET and MB (1:1) reduced the IC50 by 24-fold, compared to MB solution, and a further reduction (1.5-fold) was observed by MB photoactivation.


Assuntos
Metformina , Azul de Metileno , Administração Cutânea , Azul de Metileno/farmacologia , Pele , Humanos , Linhagem Celular Tumoral
17.
Artigo em Inglês | MEDLINE | ID: mdl-38307829

RESUMO

INTRODUCTION: The bone marrow (BM) microenvironment plays a significant role in acute myeloid leukemia (AML) genesis and there is evidence that BM mesenchymal stromal cells (BMMSCs) can support leukemia progenitor cell proliferation and survival and provide resistance to cytotoxic therapies. HYPOTHESIS AND METHOD: Nevertheless, currently unknown are the relevance of the spatial localization of AML cells relative to the BMMSCs and whether BMMSCs from patients with AML and healthy subjects have similar properties. To address these issues, we performed a differential gene expression analysis using RNA-sequencing data generated from healthy donors (HDs) and leukemic BMMSCs. RESULTS: The Gene Set Enrichment Analysis (GSEA) revealed that leukemic BMMSCs were associated with the terms "positive regulation of cell cycle", "angiogenesis" and "signaling by the estimated glomerular filtration rate (eGFR)", whereas healthy donor (HD)-derived BMMSCs were associated with "programmed cell death in response to the reactive oxygen species (ROS)", "negative regulation of the cytochrome C from the mitochondria" and "interferon signaling". Next, we evaluated the mitochondrial superoxide production in AML cells in a co-culture layered model. The superoxide production was reduced in leukemic cells in close contact (adhered to the surface or beneath the cell layer) with BMMSCs, indicating lower oxidative stress. CONCLUSION: Taken together, our results suggest that AML-derived BMMSCs are transcriptionally rewired and can reduce the metabolic stress of leukemic cells.

18.
Cancers (Basel) ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551566

RESUMO

Despite the advances in understanding the biology of hematologic neoplasms which has resulted in the approval of new drugs, the therapeutic options are still scarce for relapsed/refractory patients. Eribulin is a unique microtubule inhibitor that is currently being used in the therapy for metastatic breast cancer and soft tissue tumors. Here, we uncover eribulin's cellular and molecular effects in a molecularly heterogeneous panel of hematologic neoplasms. Eribulin reduced cell viability and clonogenicity and promoted apoptosis and cell cycle arrest. The minimal effects of eribulin observed in the normal leukocytes suggested selectivity for malignant blood cells. In the molecular scenario, eribulin induces DNA damage and apoptosis markers. The ABCB1, ABCC1, p-AKT, p-NFκB, and NFκB levels were associated with responsiveness to eribulin in blood cancer cells, and a resistance eribulin-related target score was constructed. Combining eribulin with elacridar (a P-glycoprotein inhibitor), but not with PDTC (an NFkB inhibitor), increases eribulin-induced apoptosis in leukemia cells. In conclusion, our data indicate that eribulin leads to mitotic catastrophe and cell death in blood cancer cells. The expression and activation of MDR1, PI3K/AKT, and the NFκB-related targets may be biomarkers of the eribulin response, and the combined treatment of eribulin and elacridar may overcome drug resistance in these diseases.

19.
Life Sci ; 311(Pt B): 121146, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336127

RESUMO

AIMS: Despite the development of therapeutic strategies for chronic lymphocytic leukemia (CLL), most patients remain incurable, relapse, or refractory to current treatments, indicating the need to expand the antineoplastic repertoire for this disease. Ezrin (EZR) is a known oncogene in solid tumors and plays a key role in cell survival and BCR-mediated signaling activation in B-cell lymphomas. However, its role in hematological neoplasms remains poorly explored. MAIN METHODS: The present study assessed EZR expression in samples from CLL patients and healthy donors and evaluated the cellular and molecular effects of a pharmacological EZR inhibitor, NSC305787, in CLL cellular models. KEY FINDINGS: EZR was highly expressed and positively associated with relevant signaling pathways related to CLL development and progression, including TP53, PI3K/AKT/mTOR, NF-κB, and MAPK. NSC305787 reduced viability, clonogenicity, and cell cycle progression and induced apoptosis in CLL cells. Pharmacological EZR inhibition also attenuated ERK, S6RP, and NF-κB activation, indicating that EZR not only associates with but also activates these signaling pathways in CLL. Ex vivo assays revealed that the EZR inhibition-induced cell viability reduction was independent of molecular risk and the Binet stage. SIGNIFICANCE: Our study provides insights into EZR as a pharmacological target in CLL, shedding light on a novel strategy for treating this disease.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose
20.
Front Immunol ; 13: 941757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439184

RESUMO

Purpose: Some first-line cytotoxic chemotherapics, e.g. doxorubicin, paclitaxel and oxaliplatin, induce activation of the immune system through immunogenic cell death (ICD). Tumor cells undergoing ICD function as a vaccine, releasing damage-associated molecular patterns (DAMPs), which act as adjuvants, and neoantigens of the tumor are recognized as antigens. ICD induction is rare, however it yields better and long-lasting antitumor responses to chemotherapy. Advanced metastatic melanoma (AMM) is incurable for more than half of patients. The discovery of ICD inducers against AMM is an interesting drug discovery strategy with high translational potential. Here we evaluated ICD induction of four highly cytotoxic chromomycins A (CA5-8). Methods: ICD features and DAMPs were evaluated using several in vitro techniques with metastatic melanoma cell line (B16-F10) exposed to chromomcins A5-8 such as flow cytometry, western blot, RT-PCR and luminescence. Additionally in vivo vaccination assays with CA5-treated cells in a syngeneic murine model (C57Bl/6) were performed to confirm ICD evaluating the immune cells activation and their antitumor activity. Results: B16-F10 treated with CA5-8 and doxorubicin exhibited ICD features such as autophagy and apoptosis, externalization of calreticulin, and releasing of HMGB1. However, CA5-treated cells had the best profile, also inducing ATP release, ERp57 externalization, phosphorylation of eIF2α and altering expression of transcription of genes related to autophagy, endoplasmic reticulum stress, and apoptosis. Bona fide ICD induction by CA5 was confirmed by vaccination of C57BL/6 mice with CA5-treated cells which activated antigen-presenting cells and T lymphocytes and stimulated antitumor activity. Conclusion: CA5 induces bona fide immunogenic cell death on melanoma.


Assuntos
Antineoplásicos , Melanoma , Camundongos , Animais , Morte Celular Imunogênica , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Doxorrubicina , Alarminas , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA