Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chemosphere ; 310: 136801, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241121

RESUMO

Fungicides containing manganese (Mn) applied to control plant diseases increase the concentration of Mn in soils, which may potentiate Mn toxicity in acid soils. Some species of wild grasses, such as those from the Pampa biome located in South America, or even those introduced into this biome, may possess different mechanisms of tolerance to excess Mn. The present study aimed to evaluate the subcellular distribution and physiological and biochemical responses of exotic and native grasses from the Pampa biome, cultivated in Mn excess. The experiment was conducted in nutrient solution in a greenhouse, in an entirely randomized design, bifactorial 4 × 4, consisting of four Mn concentrations (2 [control], 300, 600 and 900 µM) and four species (two exotic: Avena strigosa and Lolium multiflorum; and two native: Paspalum notatum and Paspalum plicatulum). At 27 days of exposure to the treatments, biomass and growth rates, leaf gas exchange with the environment, photosynthetic pigment concentrations of malondialdehyde and H2O2, antioxidant enzyme activities (SOD and POD), and subcellular distribution of Mn were evaluated. Most of the grasses showed high concentration of Mn in tissues, mainly, in the shoot. In the presence of 900 µM Mn, more than 80% of the absorbed Mn was compartmentalized in the cell walls and vacuoles of the cells. Compartmentalization of Mn excess into metabolically less active organelles is the main tolerance factor in grasses. Physiological and biochemical responses were stimulated in the presence of 300 µM Mn, while 900 µM Mn negatively affected biochemical-physiological responses of grasses. The species L. multiflorum was most sensitive to excess Mn, while P. notatum was the most tolerant.


Assuntos
Manganês , Poaceae , Antioxidantes , Ecossistema , Peróxido de Hidrogênio , Manganês/toxicidade , Solo/química
2.
Biosci. j. (Online) ; 39: e39006, 2023. graf
Artigo em Inglês | LILACS | ID: biblio-1415871

RESUMO

Due to rainfall and high temperatures, the Amazonian soil undergoes changes in its source material and leaching of base cations. This results in deep, infertile, and acidic soil. Aluminum present in acidic soil impairs plant growth and development by inhibiting root formation, enzymatic reactions, absorption, transport, and nutrient utilization. This study aimed to evaluate the effects of aluminum dosage on the metabolism of the oil palm Elaeis guineensis Jacq. The study was conducted in a greenhouse at the Federal Rural University of Amazonia. The experimental design was randomized, with five replications, in which dosages of 0, 10, 20, 30, and 40 mg L-1 aluminum chloride (AlCl3.6H2O) were administered. Electrolyte leakage, nitrate, nitrate reductase, free ammonium, soluble amino acids, proline content, and soluble proteins were analyzed in the leaves and roots of the oil palm. The highest concentration of aluminum was found in the roots. AlCl3 treatment at 40 mg L-1 increased electrolyte leakage, nitrate, ammonium, and proline concentrations in the roots, and amino acid concentrations in both the leaves and roots. Furthermore, a decrease in nitrate reductase enzyme activity was observed in the roots. This study demonstrates that the oil palm has mechanisms of tolerance to aluminum toxicity.


Assuntos
Óleo de Palmeira/metabolismo , Acidez do Solo , Alumínio/toxicidade
3.
Semina ciênc. agrar ; 43(6): 2449-2470, nov.-dez. 2022. graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1418839

RESUMO

The influence of water deficit on plant physiological and biochemical responses as measured by the fraction of transpirable soil water (FTSW) has not been investigated in cultivars developed by the world's largest soybean producer. This information can help obtain plants with improved tolerance to the abiotic stress that most affects soybean production in Brazil, enabling adaptation to edaphoclimatic conditions to enhance the crop's yield potential. We aim to determine the FTSW threshold for transpiration and evaluate changes in the growth, physiological activities, and biochemical and antioxidant responses of soybean cultivars. Three trials were sown on 11/19/2018 (T1), 12/28/2018 (T2), and 9/9/2019 (T3), representing almost the entire soybean sowing window in Brazil. The estimated FTSW threshold values were 0.33, 0.29, and 0.31 in T1; 0.35, 0.41, and 0.43 in T2; and 0.31, 0.49, and 0.45 in T3 for cultivars BMX GARRA IPRO, DM 66I68 RSF IPRO, and NA 5909 RG, respectively. In the three trials, NA 5909 RG showed the greatest height. The POD enzyme was activated in non-irrigated plants in T2 only in cvs. DM 66I68 RSF IPRO and NA 5909 RG. We conclude that cvs. DM 66I68 RSF IPRO and NA 5909 RG showed a more efficient stomatal control, conserving soil water for a longer time, which indicates greater tolerance to water deficit.


A influência do déficit hídrico nas respostas fisiológicas e bioquímicas das plantas pelo estudo da fração de água transpirável do solo (FATS) não foi investigada para cultivares produzidas pelo maior produtor mundial de soja. Essas informações podem auxiliar na obtenção de plantas com maior tolerância ao estresse abiótico que mais afeta a produção de soja no Brasil, possibilitando a adaptação às condições edafoclimáticas para explorar o potencial produtivo da cultura. Nosso objetivo é determinar a FATS crítica para a transpiração, avaliar mudanças no crescimento, atividades fisiológicas e respostas bioquímicas e antioxidantes em cultivares de soja. Três ensaios foram semeados em 19/11/2018 (E1), 28/12/2018 (E2) e 9/9/2019 (E3), representando quase toda a janela de semeadura da soja no Brasil. Os valores de FATS crítica estimados foram 0,33, 0,29 e 0,31 em E1, 0,35, 0,41 e 0,43 em E2 e 0,31, 0,49 e 0,45 em E3 para os cultivares BMX GARRA IPRO, DM 66I68 RSF IPRO e NA 5909 RG, respectivamente. Nos três ensaios, NA 5909 RG apresentou uma estatura superior. A enzima POD foi ativada em plantas não irrigadas em E2 apenas em DM 66I68 RSF IPRO e NA 5909 RG. Concluímos que DM 66I68 RSF IPRO e NA 5909 RG mostraram um controle estomático mais eficiente, conservando a água do solo por mais tempo, o que indica maior tolerância ao déficit hídrico.


Assuntos
Glycine max , Estresse Fisiológico , Bioquímica , Cultura , Secas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA