Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 25(7): 2025-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21701287

RESUMO

The purpose of this study was to evaluate the time course of strength and power recovery after a single bout of strength training designed with fast and slow contraction velocities. Nineteen male subjects were randomly divided into 2 groups: the slow-velocity contraction (SV) group and the fast velocity contraction (FV) group. Resistance training protocols consisted of 5 sets of 12 repetition maximum (5 × 12RM) with 50 seconds of rest between sets and 2 minutes between exercises. Contraction velocity was controlled by the execution time for each repetition (SV-6 seconds to complete concentric and eccentric phases and for FV-1.5 seconds). Leg Press 45° 1RM (LP 1RM), horizontal countermovement jump (HCMJ), and right thigh circumference (TC) were accessed in 6 distinct moments: base (1 week before exercise), 0 (immediately after exercises), 24, 48, 72, and 96 hours after exercise protocol. The SV and FV presented significant LP 1RM decrements at 0, and these were still evident 24-48 hours postexercise. The magnitude of decline was significantly (p < 0.05) higher for FV. The SV and FV presented significant HCMJ decrements at 0, but only for FV were these still evident 24-72 hours postexercise. The SV and FV presented significant TC increments at 0, and these were still evident 24-48 hours postexercise for SV but for FV it continued up to 96 hours. The magnitude of increase was significantly (p < 0.05) higher for FV. In conclusion, the fast contraction velocity protocol resulted in greater decreases in LP 1RM and HCMJ performance, when compared with slow velocity. The results lead us to interpret that this variable may exert direct influence on acute muscle strength and power generation capacity.


Assuntos
Movimento/fisiologia , Contração Muscular/fisiologia , Força Muscular/fisiologia , Recuperação de Função Fisiológica/fisiologia , Treinamento Resistido/métodos , Adulto , Humanos , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/fisiologia , Fatores de Tempo , Adulto Jovem
2.
J Int Soc Sports Nutr ; 3: 37-44, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18500971

RESUMO

Exercise training is known to induce an increase in free radical production potentially leading to enhanced muscle injury. Vitamins C and E are well known antioxidants that may prevent muscle cell damage. The purpose of this study was to determine the effects of these supplemental antioxidant vitamins on markers of oxidative stress, muscle damage and performance of elite soccer players. Ten male young soccer players were divided into two groups. Supplementation group (n = 5) received vitamins C and E supplementation daily during the pre-competitive season (S group), while the placebo group (PL group, n = 5) received a pill containing maltodextrin. Both groups performed the same training load during the three-month pre-season training period. Erythrocyte antioxidant enzymes glutathione reductase, catalase and plasma carbonyl derivatives did not show any significant variation among the experimental groups. Similarly, fitness level markers did not differ among the experimental groups. However, S group demonstrated lower lipid peroxidation and muscle damage levels (p < 0.05) compared to PL group at the final phase of pre-competitive season. In conclusion, our data demonstrated that vitamin C and E supplementation in soccer players may reduce lipid peroxidation and muscle damage during high intensity efforts, but did not enhance performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA