Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744557

RESUMO

This article explores the patents of solar energy technologies in the organic Rankine cycle (ORC) applications. The conversion of low-quality thermal energy into electricity is one of the main characteristics of an ORC, making efficient and viable technologies available today. However, only a few and outdated articles that analyze patents that use solar energy technologies in ORC applications exist. This leads to a lack of updated information regarding the number of published patents, International Patent Classification (IPC) codes associated with them, technology life cycle status, and the most relevant patented developments. Thus, this article conducts a current investigation of patents published between January 2010 and May 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and keywords. One thousand two hundred ninety-nine patents were obtained as part of the study and classified in F and Y groups of the IPC. The time-lapse analyzed was between January 2010 and May 2022. In 2014 and 2015, a peak of published patents was observed. China (CN) was the country that published the most significant number of patents worldwide. However, the European Patent Office (EP), the World Intellectual Property Organization (WO), and the United States (US) publish the patents with the highest number of patent citations. Furthermore, the possible trend regarding the development of patents for each technology is presented. A high-performance theoretical ORC plant based on the patent information analyzed by this article is introduced. Finally, exploration of IPC revealed 17 codes related to solar energy technologies in ORC applications not indexed in the main search.

2.
Int J Radiat Biol ; 96(7): 951-957, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32369405

RESUMO

Purpose: To elucidate the effects during the vegetative growth of pre-sowing magnetic treatments on water relations, photosynthesis and plant growth in tomato (Vyta) plants under greenhouse conditions.Materials and methods: Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 120 mT (rms) for 10 min and at 80 mT (rms) for 5 min. Non-treated seeds were used as controls. Plants were grown in polystyrene trays and water relations, photosynthesis and plant growth were measured.Results: Plants from magnetically treated seeds maintained better leaf water status in terms of increases in leaf water potential, leaf osmotic potential, leaf turgor potential and relative water content, and decreases in stomatal conductance and transpiration rate. Net photosynthesis rate, chlorophyll a, chlorophyll b, carotenoids and total chlorophyll contents increase in plants from magnetically exposed seeds compared to controls. The MF treatments lead to a notable increase in root length, plant height, root and shoot dry mass, leaf area per plant, and root and shoot relative growth rates.Conclusions: Application of full-wave rectified sinusoidal non-uniform MF as a pre-sowing treatment has the potential to improve tomato plant vegetative growth through the enhancement of water relations and photosynthesis.


Assuntos
Campos Magnéticos , Fotossíntese , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Água/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA