Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 91(3): e20181330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508665

RESUMO

Type 1 diabetes (T1D) is the result of the selective destruction of the pancreatic ß-cells by T cells of the immune system. Although spleen is a secondary lymphoid organ, it is also involved in the T1D pathogenesis. However, the alterations in a variety of cellular processes of this disease need to be further understood. We aimed to analyze the benefits of resveratrol, and its complexed form on diabetic complications in the spleen of rats. To this end, we investigated important enzymes of phosphoryl transfer network, and Na+, K+-ATPase activity. Wistar rats were divided into non-diabetic groups: Control, Ethanol, Resveratrol, Hydroxypropyl-ß-cyclodextrin, Resveratrol-hydroxypropyl-ß-cyclodextrin, and diabetic groups with the same treatments. Diabetes was induced by a single dose of 60 mg/kg of streptozocin intraperitoneally, and treatments by intragastric gavage once daily for 60 days. Hyperglycemia reduced creatine kinase activity, which was reversed by the administration of resveratrol. Na+, K+-ATPase activity was greatly affected, but it was reversed by resveratrol and resveratrol-hydroxypropyl-ß-cyclodextrin. This suggest an energetic imbalance in the spleen of diabetic rats, and in case this also occurs in the diabetic patients, it is possible that resveratrol supplementation could be beneficial to the better functioning of the spleen in diabetic patients.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Resveratrol/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Baço/metabolismo , Animais , Antioxidantes/metabolismo , Glicemia/análise , Peso Corporal , Creatina Quinase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Metabolismo Energético/efeitos dos fármacos , Hiperglicemia/metabolismo , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Estreptozocina
2.
Zebrafish ; 16(4): 370-378, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145046

RESUMO

The object discrimination test allows the testing of different memory retention periods. However, few behavioral endpoints have been measured in fish species such that retention is often assessed using a single parameter (time spent in object area). Here, we aimed to explore the object discrimination test in zebrafish by assessing their behavioral performance after 1 or 24 h retention interval periods. To characterize putative interaction-like behaviors, fish were tested in the absence or presence of scopolamine (1 h before test session). Zebrafish were habituated for 3 consecutive days in the experimental tank, and training session was performed for 10 min using two identical nonpreferred objects (black cube or sphere). After the retention intervals, a familiar object was replaced by a novel object (test session, 10 min). Fish were also exposed to the novel tank diving test to assess locomotion and anxiety-like behaviors. At 1 h retention interval, animals performed more circular-like investigation near the familiar object, whereas 24 h after training session, a prominent rapid investigation was observed when animals explore the nonfamiliar object. Because scopolamine abolished these phenotypes, as well as the increased time spent in the novel object area during the test without changing locomotion and anxiety-related parameters, the behavioral responses described here may predictively reflect interaction-like behaviors involved in object discrimination memory in zebrafish models.


Assuntos
Cognição/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Nootrópicos/farmacologia , Reconhecimento Visual de Modelos/efeitos dos fármacos , Escopolamina/farmacologia , Peixe-Zebra/fisiologia , Animais , Transtornos da Memória/induzido quimicamente
3.
Mol Neurobiol ; 56(1): 583-594, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29748917

RESUMO

Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures, which culminate in various neurobehavioral and neurochemical changes. Taurine (TAU) is an amino sulfonic acid which acts an endogenous inhibitory neuromodulator. Moreover, TAU displays intrinsic antioxidant activity, contributing to its beneficial actions in the CNS. Here, we evaluated whether TAU pretreatment protects from pentylenetetrazole (PTZ)-induced behavioral alterations and oxidative stress-related parameters in zebrafish brain tissue. Fish were pretreated with 42, 150, and 400 mg/L TAU (40 min) and further exposed to 10 mM PTZ (20 min) to analyze the seizure-like behaviors. As a positive control, another group was previously treated with 75 µM diazepam (DZP). Afterwards, biochemical experiments were performed. All TAU concentrations tested decreased seizure intensity in the first 150 s. Importantly, 150 mg/L TAU attenuated seizure-like behavioral scores, decreased seizure intensity, reduced the frequency of clonic-like seizures (score 4), and increased the latency to score 4. TAU (150 mg/L) also prevented oxidative stress in PTZ-challenged fish by decreasing lipid peroxidation and protein carbonylation and preventing changes on nonprotein thiol levels. No significant changes were observed in MTT assay and LDH activity. Differently than observed in DZP group, TAU did not affect the overall swimming activity of fish, suggesting different mechanisms of action. Collectively, we show that TAU attenuates PTZ-induced seizure-like behaviors and brain oxidative stress in zebrafish, suggesting the involvement of antioxidant mechanisms in neuroprotection.


Assuntos
Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Taurina/farmacologia , Peixe-Zebra/metabolismo , Animais , Antioxidantes , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diazepam/farmacologia , Feminino , Masculino , Neuroquímica , Estresse Oxidativo/efeitos dos fármacos , Pentilenotetrazol , Fenótipo , Carbonilação Proteica/efeitos dos fármacos , Convulsões/patologia , Natação , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
An Acad Bras Cienc ; 90(2 suppl 1): 2317-2329, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29694498

RESUMO

Creatine acts intracellularly as energy buffer and storage, demonstrating protective effects in animal models of neurodegenerative diseases. However, its permeability throught blood-brain barrier (BBB) is reduced. The aim of the present study was developing a carrier to facilitate the delivery of creatine to the central nervous system. Creatine nanoliposomes were produced, characterized and assayed in models of toxicity in vitro and in vivo. Particles showed negative zeta potential (-12,5 mV), polydispersity index 0.237 and medium-size of 105 nm, which was confirmed by transmission electron microscopy (TEM) images. Toxicity assay in vitro was evaluated with blank liposomes (no drug) or creatine nanoliposomes at concentrations of 0.02 and 0.2 mg/mL, that did not influence the viability of Vero cells. The result. of the comet assay that the nanoliposomes are not genotoxic, togeher with cell viability demonstrated that the nanoliposomes are not toxic. Besides, in vivo assays not demonstrate toxicity in hematological and biochemical markers of young rats. Nevertheless, increase content of creatine in the cerebral cortex tissue after subchronic treatment was observed. Altogether, results indicate increase permeability of creatine to the BBB that could be used as assay for in vivo studies to confirm improved effect than free creatine.


Assuntos
Encéfalo/efeitos dos fármacos , Creatina/toxicidade , Lipossomos/toxicidade , Nanopartículas/toxicidade , Polissorbatos/toxicidade , Animais , Encéfalo/ultraestrutura , Chlorocebus aethiops , Microscopia Eletrônica de Transmissão , Modelos Animais , Ratos , Ratos Wistar , Células Vero
5.
An. acad. bras. ciênc ; 90(1): 99-108, Mar. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-886876

RESUMO

ABSTRACT Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.


Assuntos
Animais , Compostos de Sulfidrila , Cisteamina/farmacologia , Cistina/análogos & derivados , Dissulfetos , Homeostase/efeitos dos fármacos , Rim/efeitos dos fármacos , Adenilato Quinase/análise , Adenilato Quinase/efeitos dos fármacos , Reprodutibilidade dos Testes , Ratos Wistar , Creatina Quinase/análise , Creatina Quinase/efeitos dos fármacos , Cistina/farmacologia , Eliminadores de Cistina/farmacologia
6.
An Acad Bras Cienc ; 90(1): 99-108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29236866

RESUMO

Considering that thiol-containing enzymes like kinases are critical for several metabolic pathways and energy homeostasis, we investigated the effects of cystine dimethyl ester and/or cysteamine administration on kinases crucial for energy metabolism in the kidney of Wistar rats. Animals were injected twice a day with 1.6 µmol/g body weight cystine dimethyl ester and/or 0.26 µmol/g body weight cysteamine from the 16th to the 20th postpartum day and euthanized after 12 hours. Pyruvate kinase, adenylate kinase, creatine kinase activities and thiol/disulfide ratio were determined. Cystine dimethyl ester administration reduced thiol/disulfide ratio and inhibited the kinases activities. Cysteamine administration increased the thiol/disulfide ratio and co-administration with cystine dimethyl ester prevented the inhibition of the enzymes. Regression between the thiol/disulfide ratio, and the kinases activities were significant. These results suggest that redox status may regulate energy metabolism in the rat kidney. If thiol-containing enzymes inhibition and oxidative stress occur in patients with cystinosis, it is possible that lysosomal cystine depletion may not be the only beneficial effect of cysteamine administration, but also its antioxidant and thiol-protector effect.


Assuntos
Cisteamina/farmacologia , Cistina/análogos & derivados , Dissulfetos , Homeostase/efeitos dos fármacos , Rim/efeitos dos fármacos , Compostos de Sulfidrila , Adenilato Quinase/análise , Adenilato Quinase/efeitos dos fármacos , Animais , Creatina Quinase/análise , Creatina Quinase/efeitos dos fármacos , Cistina/farmacologia , Eliminadores de Cistina/farmacologia , Rim/enzimologia , Piruvato Quinase/análise , Piruvato Quinase/efeitos dos fármacos , Distribuição Aleatória , Ratos Wistar , Valores de Referência , Reprodutibilidade dos Testes
7.
Pharmacol Biochem Behav ; 141: 18-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26631619

RESUMO

Alcohol is a potent agent for eliciting aggression in vertebrates. Taurine (TAU) is an amino sulfonic acid with pleiotropic actions on brain function. It is one of the most abundant molecules present in energy drinks frequently used as mixers for alcoholic beverages. However, the combined effects of TAU and ethanol (EtOH) on behavioral parameters such as aggression are poorly understood. Considering that zebrafish is a suitable vertebrate to assess agonistic behaviors using noninvasive protocols, we investigate whether TAU modulates EtOH-induced aggression in zebrafish using the mirror-induced aggression (MIA) test. Since body color can be altered by pharmacological agents and may be indicative of emotional state, we also evaluated the actions of EtOH and TAU on pigment response. Fish were acutely exposed to TAU (42, 150, and 400mg/L), EtOH (0.25%), or cotreated with both molecules for 1h and then placed in the test apparatus for 6min. EtOH, TAU 42, TAU 400, TAU 42/EtOH and TAU 400/EtOH showed increased aggression, while 150mg/L TAU only increased the latency to attack the mirror. This same concentration also prevented EtOH-induced aggression, suggesting that it antagonizes the effects of acute alcohol exposure. Representative ethograms revealed the existence of different aggressive patterns and our results were confirmed by an index used to estimate aggression in the MIA test. TAU did not alter pigment intensity, while EtOH and all cotreated groups presented a substantial increase in body color. Overall, these data show a biphasic effect of TAU on EtOH-induced aggression of zebrafish, which is not necessarily associated with changes in body color.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Taurina/farmacologia , Peixe-Zebra/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA