Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nutr Neurosci ; 15(5): 13-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23232053

RESUMO

BACKGROUND: In a previous report, we have characterized the antiperoxidative properties of alpha-mangostin in different toxic models tested in nerve tissue preparations. OBJECTIVES: Here, the modulatory effects of this xanthone on the glutathione system (reduced glutathione (GSH) levels, glutathione peroxidase (GPx), and glutathione S-transferase (GST) activities) were tested in synaptosomal P2 fractions isolated from rat brains in order to provide further information on key mechanisms exerted by this antioxidant in the nervous system. METHODS: Synaptosomes were exposed to increasing concentrations of the xanthone, and also challenged to the toxic actions of a free radical generator, ferrous sulfate (FeSO(4)). For comparative purposes, the mitochondrial toxin 3-nitropropionic acid (3-NP) was also explored. RESULTS: Alpha-mangostin significantly decreased the levels of GSH, and increased GPx activity. DISCUSSION: This finding was interpreted as a modulatory action of the GSH system in preparation to exert antioxidant responses. Although FeSO(4) exhibited similar effects, these were interpreted as a compensatory response to the toxic actions of the pro-oxidant. We came to this conclusion based on our previous report where alpha-mangostin produced antiperoxidative effects and FeSO(4) produced oxidative damage to lipids. GST activity remained unaffected by both the antioxidant and the pro-oxidant. Our results suggest that alpha-mangostin is able to modulate GPx activity as a potential antioxidant strategy, thereby transiently consuming GSH levels.


Assuntos
Encéfalo/metabolismo , Garcinia mangostana/química , Glutationa Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Xantonas/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Compostos Ferrosos/farmacologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Masculino , Nitrocompostos/farmacologia , Estresse Oxidativo/fisiologia , Propionatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Sinaptossomos/metabolismo
2.
Salud ment ; Salud ment;34(6): 497-506, nov.-dic. 2011. ilus, tab
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-632856

RESUMO

New neuron formation in the adult brain extends our knowledge and incorporates a novel dimension about brain plasticity. Adult neurogenesis is a complex process regulated by different factors within the niche, where adult neural stem cells reside, proliferate and differentiate. Neural stem cell together with astrocytes and endothelial cells form the principle components of this complex niche. Other molecular factors that regulate adult neurogenesis are the neuro-transmitters (GABA, glutamate, serotonin, dopamine); hormones (prolactin, growth hormone, estrogens and melatonin); growth factors (FGF, EGF, VEGF) and neurotrophins (BDNF, NT3). All of them regulate different aspects of the neurogenic process. Behavioral regulators that influence new neuron formation in the adult brain include physical activity, complex stimulatory environment best known as enrichment environment, and social interaction. Voluntary physical activity with free access to the running wheel increases the number of proliferating cells, while the complex stimulatory environment provided by enriched environment preferentially influences survival of newborn cells. In addition, social interaction has a positive influence on the new neuron formation in the dentate gyrus (DG). Although adult hippocampal neurogenesis is positively regulated by the aforementioned factors, there are different conditions with negative influence on this process. Some of these conditions are stress exposure and sleep deprivation. Both conditions are present in neuropsychiatric diseases such as depression, anxiety and schizophrenia. Thus, stress and sleep deprivation impair adult hippocampal neurogenesis. Alteration of the neurogenic process following stress occurs due to the high levels of glucocorticoid receptors within the hippocampus and because exposure to stress causes the increase in glucocorticoid levels. Preclinical studies have shown that exposure to different classes of stressors affect hippocampal neurogenesis. Prolonged exposure to stressors (chronic mild stress), predatory odor, foot shock, acute force swimming and psychosocial stress not only affect mature neuronal plasticity but also hippocampal neurogenesis. Although there is information about the effects of stress on adult neurogenesis, the mechanism by which stress causes inhibition of hippocampal neurogenesis remains unclear. Recent work showed that exposure to stress increases the pro-inflammatory cytokine interleukin-1 β (IL-1 β) in several brain areas. Also, administration of IL-1β exerts stress-like effects including down-regulation of hippocampal brain derived neurotrophic factor (BDNF). Additionally, inhibition of the receptor for IL-1β prevents stress-like effects. Moreover, the suppression of cell proliferation is mediated by direct actions of IL-1 β on IL-1RI receptors localized on precursor cells. These findings support that IL-1 β is a critical mediator of the antineurogenic effect caused by acute and chronic stress. However, IL-1 β is not the unique mediator of stress that could be involved in the alteration of adult hippocampal neurogenesis. Recently it was reported that the decrease in cell proliferation concomitantly occurs with an increase of IL6 and TNFα levels. Preclinical studies have suggested that adult hippocampal neurogenesis is not a sole cause of depression or the sole mechanism of treatment efficacy, but it is likely an important contributor to this complex disorder. In order to revert the effects of stress on adult hippocampal neurogenesis, different therapies have been used, for example: electroconvulsive therapy (ECT), exercise, complex stimulatory environment and antidepressant drugs. Although the most rapid induction of neurogenesis is seen with ECT application, most studies have been done with antidepressant drugs. The effects of antidepressants are time-dependent as highest therapeutic effects are observed within the time course of weeks. Different types of antidepressants (serotonin and norepinephrine reuptake inhibitors, monoamine oxidase inhibitors and atypical antidepressants) have been used to study their influence on the neurogenic process. Despite that serotonin reuptake inhibitors are the most prescribed treatments for major depression and that the therapeutic effects of antidepressants require chronic treatment, the mechanisms by which these drugs exert their effects on hippocampal neurogenesis are still unknown. Although serotonin reuptake inhibitors are very fast in increasing serotonin levels, the antidepressant action is delayed possibly because of the induction of structural or functional changes that possibly need longer time (2-4 weeks). In this regard, one of the actions of antidepressants is the regulation of adult hippocampal neurogenesis, a process that is consistent with the delayed onset of therapeutic effects of antidepressants. Fluoxetine is one of the antidepressants more used to study its influence on adult neurogenesis. Fluoxetine targets amplifying neural progenitors by increasing the rate of symmetric divisions without altering the division of stem-like cells in the DG. Considering previous classification based on the temporal protein markers expression, the neural progenitors targeted by fluoxetine correspond to type 2a, 2b and type 3. In addition, the increase in new neurons caused by fluoxetine is due to the expansion of neural progenitors. In addition to cell proliferation, the neurogenic process also involves a maturation step, which is associated with the expression of doublecortin, a protein that binds to microtubules and that is expressed along the cytoplasm of the cell. Further maturation of immature neurons such as dendrite maturation, is controlled independently of the regulation of precursor cell proliferation. Thus, micro-regulatory events influence the course of adult hippocampal neurogenesis. Here, fluoxetine also affects dendrite maturation and functional integration of new neurons. Chronic fluoxetine treatment modifies dendrite morphology increasing dendrite arborisation and favors synaptic plasticity of newborn granule cells. Also, chronic administration of fluoxetine causes behavioral improvement, an effect that was blocked when neurogenesis was ablated by X-ray irradiation. Other important factor that influences the effect of antidepressants on adult neurogenesis is the genetic background. Then antidepressants induced behavioral improvement depending on the genetic background of the mouse strain used. Preclinical studies in mice have revealed different actions of antidepressants on adult hippocampal neurogenesis. However, studies in humans are scarce and deserve greater attention to discover the correlation between preclinical and clinical studies. Recent work in human brains shows contradictory evidences about the regulation of neuronal development by antidepressants. These evidences are in the same line as recent published work in which it was demonstrated that the effects of ADs are age-dependent. Altogether, multiple evidences indicate that antidepressants affect several aspects of the neurogenic process. Therefore, chronic treatment is necessary for the antidepressant-dependent regulation of adult hippocampal neurogenesis. In addition, it has been shown that antidepressants act through different pathways involving both neurogenesis-dependent and neurogenesis-independent actions. Although there is an important increase in the adult hippocampal neurogenesis field, it is necessary to increase the number of studies performed in human beings to correlate the preclinical findings with clinical studies to address the role of adult neurogenesis in neuropsychiatric disorders.


El hallazgo de la formación de nuevas neuronas en el giro dentado (GD) del hipocampo amplió el conocimiento acerca de la plasticidad del encéfalo. En este sentido, la neurogénesis es un proceso que involucra diferentes eventos celulares tales como: la división de las células madre, la proliferación de los neuroblastos, la migración y la sobrevivencia celular, así como la maduración dendrítica, la elongación axonal y la integración de las neuronas nuevas a los circuitos neuronales existentes. En conjunto, todas estas etapas causan cambios estructurales y funcionales en el cerebro. Por lo tanto, la formación de neuronas es un proceso regulado de manera fina por diferentes factores entre los que se incluyen: el nicho; algunos neurotransmisores como la serotonina, la dopamina, el glutamato y el GABA; factores de crecimiento como el factor de crecimiento de fibroblastos, el factor de crecimiento epidermal y el factor de crecimiento vascular endotelial (FGF, EGF y VEGF, por sus siglas en inglés); neurotrofinas como el factor neurotrópico derivado del cerebro y por la neurotrofina 3 (BDNF y NT3, por sus siglas en inglés). Aunado a la existencia de factores que favorecen la neurogénesis hipocámpica, también hay factores que influyen de manera negativa en la formación de neuronas. Entre éstos se encuentra el estrés, el cual se relaciona con algunas enfermedades neuropsiquiátricas como la depresión y la ansiedad. A este respecto, estudios preclínicos han revelado que la aplicación de diferentes tipos de estresores puede afectar la plasticidad neuronal al inducir alteraciones morfológicas y funcionales en el hipocampo, así como afectar el proceso neurogénico. Las alteraciones causadas por el estrés se han relacionado con un aumento considerable y sostenido de los niveles de glucocorticoides. Esto último afecta el proceso neurogénico debido a que el hipocampo es una estructura cerebral que expresa niveles altos de receptores para estas hormonas. Al ser activados de forma persistente, los receptores a glucocorticoides causan una alteración en la neuroplasticidad hipocámpica. De tal modo y considerando lo anterior, teorías recientes han asociado un fallo en la formación de neuronas en el hipocampo con algunos trastornos psiquiátricos como la demencia, la esquizofrenia y la depresión. No esta del todo elucidado el mecanismo a través del cual el estrés altera el proceso neurogénico. Sin embargo, trabajos recientes han revelado que la exposición a estrés causa un aumento en los niveles de ciertas citocinas proinflamatorias, tales como la interleucina-1 β (IL-1 β). El aumento en los niveles de esta citocina provoca un efecto tipo depresivo y una disminución en los niveles del BDNF, así como una alteración en la formación de nuevas neuronas. Estos hallazgos apoyan la idea de que la IL-1 β es un mediador crítico del efecto antineurogénico causado por el estrés crónico y agudo. Sin embargo, la IL-1 β no es la única citocina asociada con las alteraciones en el proceso neurogénico, ya que recientemente se reportó que la disminución en la proliferación celular causada por el estrés ocurre de manera paralela con el aumento en la expresión de los mensajeros de la IL-6 y del TNF-α. Una manera de contrarrestar los efectos del estrés sobre la plasticidad neuronal es a través de la administración de fármacos antidepresivos. Diversos trabajos han mostrado que el tratamiento crónico con este tipo de fármacos revierte las alteraciones en la neurogénesis hipocámpica y en la plasticidad neuronal causadas por el estrés. Finalmente, aun cuando existen evidencias del papel que desempeña la neurogénesis en modelos animales de algunas enfermedades neuropsiquiátricas y de la forma en que los fármacos antidepresivos favorecen la formación de neuronas, es importante contar con más estudios en humanos que permitan corroborar los hallazgos que se han obtenido en los estudios preclínicos. De algún modo todos los reportes apuntan a que los fármacos antidepresivos pueden actuar por mecanismos independientes o dependientes de la neurogénesis hipocámpica.

3.
Basic Clin Pharmacol Toxicol ; 109(5): 350-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21645264

RESUMO

In this work, the effect of a single dose of diazepam was tested on different markers of oxidative damage in the striatum of rats in an acute model of immobilization (restraint) stress. In addition, the locomotor activity was measured at the end of the restraint period. Immobilization was induced to animals for 24 hr, and then, lipid peroxidation, superoxide dismutase activity and content, and mitochondrial function were all estimated in striatal tissue samples. Corticosterone levels were measured in serum. Diazepam was given to rats as a pre-treatment (1 mg/kg, i.p.) 20 min. before the initiation of stress. Our results indicate that acute stress produced enhanced striatal levels of lipid peroxidation (73% above the control), decreased superoxide dismutase activity (54% below the control), reduced levels of mitochondrial function (35% below the control) and increased corticosterone serum levels (86% above the control). Pre-treatment of stressed rats with diazepam decreased the striatal lipid peroxidation levels (68% below the stress group) and improved mitochondrial function (18% above the stress group), but only mild preservation of superoxide dismutase activity was detected (17% above the stress group). In regard to the motor assessment, only the stereotyped activity was increased in the stress group with respect to control (46% above the control), and this effect was prevented by diazepam administration (30% below the stress group). The preventive actions of diazepam in this acute model of stress suggest that drugs exhibiting anxiolytic and antioxidant properties might be useful for the design of therapies against early acute phases of physic stress.


Assuntos
Ansiolíticos/farmacologia , Antioxidantes/farmacologia , Diazepam/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Estresse Fisiológico , Animais , Western Blotting , Corticosterona/sangue , Imobilização , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo
4.
Basic Clin Pharmacol Toxicol ; 109(2): 123-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21371264

RESUMO

This work focuses on the effect of acute stress on different markers of oxidative stress and mitochondrial dysfunction in the rat striatum. In addition, the effect of a single dose of l-carnitine (l-CAR, 300 mg/kg, i.p.) was evaluated in these animals. Immobilization (restraint) stress was induced to rats for 24 hr. The levels of lipid peroxidation (LP) and mitochondrial function (MF), as well as the superoxide dismutase (SOD) activity and content and reduced glutathione (GSH) levels, were all measured in striatal samples of animals subjected to stress. Our results indicate that acute stress is able to increase the striatal LP and reduced the levels of MF, while significantly lowered the manganese superoxide dismutase (Mn-SOD) activity. No changes were observed in the total striatal content of SOD, nor in GSH levels, but serum corticosterone content was increased by stress. l-CAR exhibited partial protective effects on the immobilized group, reducing the striatal LP and recovering the striatal MF and Mn-SOD activity. Our results suggest that acute restraint stress brings an accurate model for early pro-oxidant responses that can be targeted by broad-spectrum antioxidants like l-CAR.


Assuntos
Carnitina/farmacologia , Corpo Estriado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Corpo Estriado/efeitos dos fármacos , Corticosterona/sangue , Peroxidação de Lipídeos , Masculino , Mitocôndrias/fisiologia , Ratos , Ratos Wistar , Restrição Física , Superóxido Dismutase/metabolismo
5.
Behav Brain Res ; 210(2): 240-50, 2010 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-20219555

RESUMO

Amyloid beta (Abeta) peptide exerts different toxic effects at a cellular level, including over-activation of N-methyl-D-aspartate receptor (NMDAr) and excitotoxicity, synaptic dysfunction and neuronal death. Kynurenic acid (KYNA) is an endogenous antagonist of NMDAr and alpha7 nicotinic receptors. Systemic administrations of both the immediate metabolic precursor of KYNA, L-kynurenine (L-KYN), and a proved inhibitor of KYNA's brain transport, probenecid (PROB), have shown to produce neuroprotective effects in a considerable number of experimental toxic conditions; however, this strategy has not been tested in the toxic model Abeta peptide so far. In this study we evaluated the effects of systemic administration of PROB (50 mg/kg/day for 7 days), L-KYN (75 mg/kg/day for 7 days) and their combination, on behavioural (locomotor activity and spatial memory) and morphological alterations induced by an intrahippocampal infusion of Abeta 25-35 to rats. An additional group was administered with the potent NMDAr antagonist dizocilpine (MK-801, 0.8 mg/kg/day for 7 days) for comparative purposes. A significant improvement of spatial memory was evident in Abeta-lesioned rats since post-lesion day 21 with all treatments tested and this effect was correlated with a reduction of cell damage and a decrease in reactive gliosis in hippocampal CA1 area. Neither L-KYN, nor PROB, or their combination, produced major alterations in motor function when given alone to rats. These results suggest that modulation of NMDAr activity by mean of therapeutic strategies designed to enhance KYNA in the brain may help to counteract neurodegenerative events coursing with Abeta toxicity and excitotoxic patterns.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Hipocampo/efeitos dos fármacos , Cinurenina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Probenecid/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Maleato de Dizocilpina/administração & dosagem , Relação Dose-Resposta a Droga , Interações Medicamentosas , Proteína Glial Fibrilar Ácida/metabolismo , Cinurenina/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Probenecid/farmacologia , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA