Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(8): 2706-2717, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650574

RESUMO

Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.


Assuntos
Encéfalo , Leptina , Neurogênese , Receptores para Leptina , Animais , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Camundongos , Encéfalo/metabolismo , Leptina/deficiência , Leptina/metabolismo , Neurogênese/fisiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Atrofia/patologia
3.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911072

RESUMO

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Interleucina-6 , Camundongos , Placa Amiloide
4.
Cell Death Dis ; 10(4): 323, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975983

RESUMO

Harmful environmental stimuli during critical stages of development can profoundly affect behavior and susceptibility to diseases. Alzheimer disease (AD) is the most frequent neurodegenerative disease, and evidence suggest that inflammatory conditions act cumulatively, contributing to disease onset. Here we investigated whether infection early in life can contribute to synapse damage and cognitive impairment induced by amyloid-ß oligomers (AßOs), neurotoxins found in AD brains. To this end, wild-type mice were subjected to neonatal (post-natal day 4) infection by Escherichia coli (1 × 104 CFU/g), the main cause of infection in low-birth-weight premature infants in the US. E. coli infection caused a transient inflammatory response in the mouse brain starting shortly after infection. Although infected mice performed normally in behavioral tasks in adulthood, they showed increased susceptibility to synapse damage and memory impairment induced by low doses of AßOs (1 pmol; intracerebroventricular) in the novel object recognition paradigm. Using in vitro and in vivo approaches, we show that microglial cells from E. coli-infected mice undergo exacerbated activation when exposed to low doses of AßOs. In addition, treatment of infected pups with minocycline, an antibiotic that inhibits microglial pro-inflammatory polarization, normalized microglial response to AßOs and restored normal susceptibility of mice to oligomer-induced cognitive impairment. Interestingly, mice infected with by E. coli (1 × 104 CFU/g) during adolescence (post-natal day 21) or adulthood (post-natal day 60) showed normal cognitive performance even in the presence of AßOs (1 pmol), suggesting that only infections at critical stages of development may lead to increased susceptibility to amyloid-ß-induced toxicity. Altogether, our findings suggest that neonatal infections can modulate microglial response to AßOs into adulthood, thus contributing to amyloid-ß-induced synapse damage and cognitive impairment.


Assuntos
Disfunção Cognitiva/microbiologia , Encefalite/microbiologia , Infecções por Escherichia coli/complicações , Microglia/metabolismo , Sinapses/efeitos dos fármacos , Peptídeos beta-Amiloides , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/imunologia , Encéfalo/microbiologia , Células Cultivadas , Disfunção Cognitiva/induzido quimicamente , Suscetibilidade a Doenças/etiologia , Feminino , Masculino , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Fatores de Tempo
5.
Brain Struct Funct ; 223(5): 2229-2241, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29460051

RESUMO

The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Aprendizagem em Labirinto/fisiologia , Reconhecimento Psicológico/fisiologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Animais , Condicionamento Psicológico , Citocinas/metabolismo , Comportamento Exploratório/fisiologia , Medo/psicologia , Fator de Crescimento Insulin-Like I/metabolismo , Deficiências da Aprendizagem/genética , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Neurogênese/genética , RNA Mensageiro/metabolismo , Tempo de Reação/genética , Fator de Transcrição STAT5/genética
6.
J Pathol ; 245(1): 85-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29435980

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-ß oligomers (AßOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AßOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Liraglutida/farmacologia , Memória/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Sinapses/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Receptor de Insulina/metabolismo , Sinapses/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-28197094

RESUMO

Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

8.
EMBO Mol Med ; 7(2): 190-210, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25617315

RESUMO

Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aß oligomers (AßOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AßOs failed to induce glucose intolerance, suggesting AßOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AßOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AßOs further induced eIF2α-P and activated pro-inflammatory IKKß/NF-κB signaling in the hypothalamus of mice and macaques. AßOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AßOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AßOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipotálamo/metabolismo , Oligonucleotídeos/metabolismo , Nervos Periféricos/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Feminino , Glucose/metabolismo , Humanos , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Oligonucleotídeos/genética , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
J Neurosci ; 34(41): 13629-43, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297091

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a major medical problem. Here, we have investigated the impact of amyloid-ß (Aß) oligomers, AD-related neurotoxins, in the brains of rats and adult nonhuman primates (cynomolgus macaques). Soluble Aß oligomers are known to accumulate in the brains of AD patients and correlate with disease-associated cognitive dysfunction. When injected into the lateral ventricle of rats and macaques, Aß oligomers diffused into the brain and accumulated in several regions associated with memory and cognitive functions. Cardinal features of AD pathology, including synapse loss, tau hyperphosphorylation, astrocyte and microglial activation, were observed in regions of the macaque brain where Aß oligomers were abundantly detected. Most importantly, oligomer injections induced AD-type neurofibrillary tangle formation in the macaque brain. These outcomes were specifically associated with Aß oligomers, as fibrillar amyloid deposits were not detected in oligomer-injected brains. Human and macaque brains share significant similarities in terms of overall architecture and functional networks. Thus, generation of a macaque model of AD that links Aß oligomers to tau and synaptic pathology has the potential to greatly advance our understanding of mechanisms centrally implicated in AD pathogenesis. Furthermore, development of disease-modifying therapeutics for AD has been hampered by the difficulty in translating therapies that work in rodents to humans. This new approach may be a highly relevant nonhuman primate model for testing therapeutic interventions for AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Astrócitos/patologia , Injeções Intraventriculares , Macaca fascicularis , Masculino , Microglia/patologia , Microinjeções , Emaranhados Neurofibrilares/patologia , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Sinapses/patologia , Sinapses/fisiologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA