Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 372: 131174, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624788

RESUMO

Contamination of foods by mycotoxins is a reality. However, emerging technologies such as ozonization can be used to reduce the levels of these contaminants. Thus, the aim of this study was to evaluate the effects of using ozone at different period and application times during the soaking step of parboiling process. Samples were analyzed for qualitative and quantitative analysis of mycotoxins, swelling power and solubility, head rice yield, protein solubility, cooking time, texturometric profile, colorimetric profile and defective grains. The results showed tha parboiled rice grains treated with ozone present significant reduction of mycotoxins contamination, regardless of the time and period of application and the mycotoxin evaluated. Regardig to technological properties, the samples treated with ozone in the final 3 h and for 5 h of soaking presented higher head rice yield, luminosity and hardness, with decreases in cooking time, percentage of defective grains and soluble protein.


Assuntos
Micotoxinas , Oryza , Ozônio , Culinária , Dureza
2.
J Food Sci ; 84(8): 2222-2227, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31339565

RESUMO

The conventional prolonged parboiling process results in high operation cost and grain darkening, which may limit consumption. Moreover, residue generation by rice industries is another challenge. The objective of this study was to evaluate the use of microwave irradiation during soaking and gelatinization stages of parboiling rice. Processing time, colorimetric profile, broken and nongelatinized grains, sucrose and glucose content, free 5-hydroxymethyl-2-furfural, and residual phosphorus were evaluated. As the soaking and gelatinization times during microwave treatments increased, the colorimetric parameters increased; however, the values were lower than those with the conventional process. Regardless of soaking time, a decrease in broken and nongelatinized grains was obtained by using the lowest steaming time (5 min). Additionally, lower residual phosphorus content was found in soaking water (10 and 20 min) when using microwave irradiation. Under favorable conditions, a reduction in the levels of broken and nongelatinized grains, residual phosphorus, and color changes was observed, indicating that microwave irradiation may be more beneficial than conventional parboiling. PRACTICAL APPLICATION: Parboiling requires a high volume of water and soaking time, which leads to high costs, underutilization of infrastructures, and high residue in the water after processing. The rapid parboiling process involves the use of microwaves during the soaking and gelatinization stages. The main advantages of the microwave parboiling process include reduced processing time, ranging from 83% to 95%, higher gelatinization, greater yield, reduced darkening, and reduced residual phosphorus in the effluents by 60%. This report can aid industries in streamlining their processes, thereby providing a high-quality, lower cost, and environmentally safe product.


Assuntos
Manipulação de Alimentos/métodos , Oryza/química , Oryza/efeitos da radiação , Fósforo/análise , Águas Residuárias/análise , Culinária , Temperatura Alta , Micro-Ondas , Sementes/química , Sementes/efeitos da radiação
3.
Food Chem ; 220: 510-516, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27855933

RESUMO

Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control.


Assuntos
Cromatografia Líquida/métodos , Fungos/efeitos dos fármacos , Fungicidas Industriais/análise , Fungicidas Industriais/farmacologia , Espectrometria de Massas/métodos , Micotoxinas/análise , Triticum/química , Triticum/efeitos dos fármacos , Triticum/microbiologia , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA