Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 67(6): e2200111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461912

RESUMO

SCOPE: The purpose of the study is to characterize the chemical diversity in rice bran (RB) lipidome and determines whether daily RB consumption for 4 weeks may modulate plasma lipid profiles in children. METHODS AND RESULTS: Untargeted and targeted lipidomics via ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-MS/MS) are applied to identify bioactive RB lipids from a collection of 17 rice varieties. To determine the impact of RB (Calrose-USA variety) supplementation on plasma lipid profile, a secondary analysis of plasma lipidome is conducted on data recorded in a clinical study (NCT01911390, n = 18 moderately hypercholesterolemic children) before and after 4 weeks of dietary intervention with a control or RB supplemented (15 g day-1 ) snack. Untargeted lipidomic reveals 118 lipids as the core of lipidome across all varieties among which phospholipids are abundant and oxylipins present. Phytoprostanes and phytofurans are quantified and characterized. Lipidome analysis of the children plasma following RB consumption reveals the presence of polar lipids and oxylipins alongside putative modulations in endocannabinoids associated with RB consumption. CONCLUSION: The investigation of novel polar lipids, oxylipins, phytoprostanes, and phytofurans in RB extracts provides support for new health-promoting properties interesting for people at risk for cardiometabolic disease.


Assuntos
Oryza , Fosfolipídeos , Criança , Humanos , Cromatografia Líquida , Glicolipídeos , Metabolismo dos Lipídeos , Lipidômica , Oxilipinas , Fosfolipídeos/análise , Espectrometria de Massas em Tandem/métodos
2.
Metabolites ; 11(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671946

RESUMO

Rice bran (RB) corresponds to the outer layers of whole grain rice and contains several phenolic compounds (PCs) that make it an interesting functional food ingredient. PC richness is enhanced in pigmented RB varieties and requires effective ways of extraction of these compounds. Therefore, we investigated conventional and deep eutectic solvents (DES) extraction methods to recover a wide array of PCs from red and black RB. The RB were extracted with ethanol/water (60:40, v/v) and two DES (choline chloride/1.2-propanediol/water, 1:1:1 and choline chloride/lactic acid, 1:10, mole ratios), based on Generally Recognized as Safe (GRAS) components. Besides the quantification of the most typical phenolic acids of cereals, nontargeted metabolomic approaches were applied to PCs profiling in the extracts. Globally, metabolomics revealed 89 PCs belonging to flavonoids (52%), phenolic acids (33%), other polyphenols (8%), lignans (6%) and stilbenes (1%) classes. All extracts, whatever the solvents, were highly concentrated in the main phenolic acids found in cereals (37-66 mg/100 g in black RB extracts vs. 6-20 mg/100 g in red RB extracts). However, the PC profile was highly dependent on the extraction solvent and specific PCs were extracted using the acidic DES. The PC-enriched DES extracts demonstrated interesting DPPH scavenging activity, which makes them candidates for novel antioxidant formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA