Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 12: 657449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456901

RESUMO

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human ß-defensin-2 (hßD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.


Assuntos
Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Imunidade Inata , Hanseníase/imunologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Receptor Toll-Like 9/metabolismo , Células A549 , Biomarcadores , Células Cultivadas , Histonas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Hanseníase/microbiologia , NF-kappa B/metabolismo
2.
s.l; s.n; 2021. 1 - 15 p.
Não convencional em Inglês | CONASS, Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1353414

RESUMO

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-kB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human b-defensin-2 (hbD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-kB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.(AU)


Assuntos
Humanos , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Hanseníase/imunologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Receptores Toll-Like/metabolismo , Imunidade Inata
3.
Front Immunol ; 10: 1362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316499

RESUMO

CBA mice macrophages (MØ) control infection by Leishmania major and are susceptive to Leishmania amazonensis, suggesting that both parasite species induce distinct responses that play important roles in infection outcome. To evaluate the MØ responses to infection arising from these two Leishmania species, a proteomic study using a Multidimensional Protein Identification Technology (MudPIT) approach with liquid chromatography tandem mass spectrometry (LC-MS/MS) was carried out on CBA mice bone-marrow MØ (BMMØ). Following SEQUEST analysis, which revealed 2,838 proteins detected in BMMØ, data mining approach found six proteins significantly associated with the tested conditions. To investigate their biological significance, enrichment analysis was performed using Ingenuity Pathway Analysis (IPA). A three steps IPA approach revealed 4 Canonical Pathways (CP) and 7 Upstream Transcriptional Factors (UTFs) strongly associated with the infection process. NRF2 signatures were present in both CPs and UTFs pathways. Proteins involved in iron metabolism, such as heme oxigenase 1 (HO-1) and ferritin besides sequestosome (SQSMT1 or p62) were found in the NRF2 CPs and the NRF2 UTFs. Differences in the involvement of iron metabolism pathway in Leishmania infection was revealed by the presence of HO-1 and ferritin. Noteworty, HO-1 was strongly associated with L. amazonensis infection, while ferritin was regulated by both species. As expected, higher HO-1 and p62 expressions were validated in L. amazonensis-infected BMMØ, in addition to decreased expression of ferritin and nitric oxide production. Moreover, BMMØ incubated with L. amazonensis LPG also expressed higher levels of HO-1 in comparison to those stimulated with L. major LPG. In addition, L. amazonensis-induced uptake of holoTf was higher than that induced by L. major in BMMØ, and holoTf was also detected at higher levels in vacuoles induced by L. amazonensis. Taken together, these findings indicate that NRF2 pathway activation and increased HO-1 production, together with higher levels of holoTf uptake, may promote permissiveness to L. amazonensis infection. In this context, differences in protein signatures triggered in the host by L. amazonensis and L. major infection could drive the outcomes in distinct clinical forms of leishmaniasis.


Assuntos
Leishmaniose/metabolismo , Macrófagos/parasitologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Ferritinas/metabolismo , Heme Oxigenase-1/metabolismo , Leishmania , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Óxido Nítrico/metabolismo , Proteômica , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
4.
PLoS Negl Trop Dis ; 13(6): e0007500, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216268

RESUMO

BACKGROUND: Leishmania parasites are transmitted to vertebrate hosts by phlebotomine sandflies and, in humans, may cause tegumentary or visceral leishmaniasis. The role of PKR (dsRNA activated kinase) and Toll-like receptor 3 (TLR3) activation in the control of Leishmania infection highlights the importance of the engagement of RNA sensors, which are usually involved in the antiviral cell response, in the fate of parasitism by Leishmania. We tested the hypothesis that Phlebovirus, a subgroup of the Bunyaviridae, transmitted by sandflies, would interfere with Leishmania infection. METHODOLOGY/PRINCIPAL FINDINGS: We tested two Phlebovirus isolates, Icoaraci and Pacui, from the rodents Nectomys sp. and Oryzomys sp., respectively, both natural sylvatic reservoir of Leishmania (Leishmania) amazonensis from the Amazon region. Phlebovirus coinfection with L. (L.) amazonensis in murine macrophages led to increased intracellular growth of L. (L.) amazonensis. Further studies with Icoaraci coinfection revealed the requirement of the PKR/IFN1 axis on the exacerbation of the parasite infection. L. (L.) amazonensis and Phlebovirus coinfection potentiated PKR activation and synergistically induced the expression of IFNß and IL-10. Importantly, in vivo coinfection of C57BL/6 mice corroborated the in vitro data. The exacerbation effect of RNA virus on parasite infection may be specific because coinfection with dengue virus (DENV2) exerted the opposite effect on parasite load. CONCLUSIONS: Altogether, our data suggest that coinfections with specific RNA viruses shared by vectors or reservoirs of Leishmania may enhance and sustain the activation of host cellular RNA sensors, resulting in aggravation of the parasite infection. The present work highlights new perspectives for the investigation of antiviral pathways as important modulators of protozoan infections.


Assuntos
Infecções por Bunyaviridae/complicações , Coinfecção/imunologia , Suscetibilidade a Doenças , Interferon beta/metabolismo , Interleucina-10/metabolismo , Leishmaniose/imunologia , eIF-2 Quinase/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Leishmania/imunologia , Camundongos Endogâmicos C57BL , Modelos Teóricos , Phlebovirus/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31998662

RESUMO

Nrf2 [nuclear factor erythroid 2-related factor 2 (Nrf2)] regulates the expression of a plethora of genes involved in the response to oxidative stress due to inflammation, aging, and tissue damage, among other pathological conditions. Deregulation of this cytoprotective system may also interfere with innate and adaptive immune responses. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during initial phagocytosis of parasites, which could lead to the successful establishment of infection and promote susceptibility to diseases. A wide diversity of infections, mainly those caused by intracellular pathogens such as viruses, bacteria, and protozoan parasites, modulate the activation of Nrf2 by interfering with post-translational modifications, interactions between different protein complexes and the immune response. Nrf2 may be induced by pathogens via distinct pathways such as those involving the engagement of Toll-like receptors, the activation of PI3K/Akt, and endoplasmic reticulum stress. Recent studies have revealed the importance of Nrf2 on leishmaniasis. This mini-review discusses relevant findings that reveal the connection between Leishmania-induced modifications of the host pathways and their relevance to the modulation of the Nrf2-dependent antioxidative response to the infection.


Assuntos
Leishmaniose/imunologia , Leishmaniose/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Antioxidantes , Estresse do Retículo Endoplasmático , Expressão Gênica , Humanos , Inflamação/metabolismo , Estresse Oxidativo , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Toll-Like/metabolismo
6.
Front Immunol ; 9: 2779, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546363

RESUMO

Sand flies bite mammalian hosts to obtain a blood meal, driving changes in the host inflammatory response that support the establishment of Leishmania infection. This effect is partially attributed to components of sand fly saliva, which are able to recruit and activate leukocytes. Our group has shown that heme oxygenase-1 (HO-1) favors Leishmania survival in infected cells by reducing inflammatory responses. Here, we show that exposure to sand fly bites is associated with induction of HO-1 in vivo. Histopathological analyses of skin specimens from human volunteers experimentally exposed to sand fly bites revealed that HO-1 and Nrf2 are produced at bite sites in the skin. These results were recapitulated in mice ears injected with a salivary gland sonicate (SGS) or exposed to sand fly bites, indicating that vector saliva may be a key factor in triggering HO-1 expression. Resident skin macrophages were the main source HO-1 at 24-48 h after bites. Additionally, assays in vivo after bites and in vitro after stimulation with saliva both demonstrated that HO-1 production by macrophages was Nrf2-dependent. Collectively, our data demonstrates that vector saliva induces early HO-1 production at the bite sites, representing a major event associated with establishment of naturally-transmitted Leishmania infections.


Assuntos
Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/biossíntese , Mordeduras e Picadas de Insetos/enzimologia , Insetos Vetores , Proteínas de Membrana/biossíntese , Psychodidae , Saliva , Pele/enzimologia , Animais , Feminino , Humanos , Mordeduras e Picadas de Insetos/patologia , Leishmania/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células RAW 264.7 , Pele/patologia , Células THP-1
7.
Sci Rep ; 8(1): 4857, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559670

RESUMO

Some 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) activate heme-regulated kinase causing protein synthesis inhibition via phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) in mammalian cancer cells. To evaluate if these agents have potential to inhibit trypanosome multiplication by also affecting the phosphorylation of eIF2 alpha subunit (eIF2α), we tested 25 analogs of 1,3-diarylureas and cHAUs against Trypanosoma cruzi, the agent of Chagas disease. One of them (I-17) presented selectivity close to 10-fold against the insect replicative forms and also inhibited the multiplication of T. cruzi inside mammalian cells with an EC50 of 1-3 µM and a selectivity of 17-fold. I-17 also prevented replication of African trypanosomes (Trypanosoma brucei bloodstream and procyclic forms) at similar doses. It caused changes in the T. cruzi morphology, arrested parasite cell cycle in G1 phase, and promoted phosphorylation of eIF2α with a robust decrease in ribosome association with mRNA. The activity against T. brucei also implicates eIF2α phosphorylation, as replacement of WT-eIF2α with a non-phosphorylatable eIF2α, or knocking down eIF2 protein kinase-3 by RNAi increased resistance to I-17. Therefore, we demonstrate that eIF2α phosphorylation can be engaged to develop trypanosome-static agents in general, and particularly by interfering with activity of eIF2 kinases.


Assuntos
Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença de Chagas/microbiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fase G1/efeitos dos fármacos , Heme/metabolismo , Humanos , Mioblastos/efeitos dos fármacos , Mioblastos/parasitologia , Testes de Sensibilidade Parasitária , Fosforilação , Ratos , Ureia/análogos & derivados , eIF-2 Quinase/metabolismo
8.
Sci Rep, v. 8, 4857, mar. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2402

RESUMO

Some 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) activate heme-regulated kinase causing protein synthesis inhibition via phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) in mammalian cancer cells. To evaluate if these agents have potential to inhibit trypanosome multiplication by also affecting the phosphorylation of eIF2 alpha subunit (eIF2 alpha), we tested 25 analogs of 1,3-diarylureas and cHAUs against Trypanosoma cruzi, the agent of Chagas disease. One of them (I-17) presented selectivity close to 10-fold against the insect replicative forms and also inhibited the multiplication of T. cruzi inside mammalian cells with an EC50 of 1-3 mu M and a selectivity of 17-fold. I-17 also prevented replication of African trypanosomes (Trypanosoma brucei bloodstream and procyclic forms) at similar doses. It caused changes in the T. cruzi morphology, arrested parasite cell cycle in G1 phase, and promoted phosphorylation of eIF2 alpha with a robust decrease in ribosome association with mRNA. The activity against T. brucei also implicates eIF2 alpha phosphorylation, as replacement of WT-eIF2 alpha with a non-phosphorylatable eIF2 alpha, or knocking down eIF2 protein kinase-3 by RNAi increased resistance to I-17. Therefore, we demonstrate that eIF2 alpha phosphorylation can be engaged to develop trypanosome-static agents in general, and particularly by interfering with activity of eIF2 kinases.

9.
Front Immunol ; 8: 1127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959260

RESUMO

Leishmania parasites infect macrophages, causing a wide spectrum of human diseases, from cutaneous to visceral forms. In search of novel therapeutic targets, we performed comprehensive in vitro and ex vivo mapping of the signaling pathways upstream and downstream of antioxidant transcription factor [nuclear factor erythroid 2-related factor 2 (Nrf2)] in cutaneous leishmaniasis (CL), by combining functional assays in human and murine macrophages with a systems biology analysis of in situ (skin biopsies) CL patient samples. First, we show the PKR pathway controls the expression and activation of Nrf2 in Leishmania amazonensis infection in vitro. Nrf2 activation also required PI3K/Akt signaling and autophagy mechanisms. Nrf2- or PKR/Akt-deficient macrophages exhibited increased levels of ROS/RNS and reduced expression of Sod1 Nrf2-dependent gene and reduced parasite load. L. amazonensis counteracted the Nrf2 inhibitor Keap1 through the upregulation of p62 via PKR. This Nrf2/Keap1 observation was confirmed in situ in skin biopsies from Leishmania-infected patients. Next, we explored the ex vivo transcriptome in CL patients, as compared to healthy controls. We found the antioxidant response element/Nrf2 signaling pathway was significantly upregulated in CL, including downstream target p62. In silico enrichment analysis confirmed upstream signaling by interferon and PI3K/Akt, and validated our in vitro findings. Our integrated in vitro, ex vivo, and in silico approach establish Nrf2 as a central player in human cutaneous leishmaniasis and reveal Nrf2/PKR crosstalk and PI3K/Akt pathways as potential therapeutic targets.

10.
Sci Rep ; 6: 27632, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282338

RESUMO

Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Hanseníase/imunologia , Macrófagos/imunologia , Mycobacterium leprae/patogenicidade , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Fator de Crescimento Insulin-Like I/genética , Janus Quinases/metabolismo , Hanseníase/microbiologia , Macrófagos/microbiologia , Masculino , Camundongos , Fator de Transcrição STAT1/metabolismo
11.
s.l; s.n; 2016. 13 p. ilus, tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095369

RESUMO

Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis.


Assuntos
Humanos , Animais , Masculino , Feminino , Adulto , Camundongos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Linhagem Celular , Fator de Transcrição STAT1/metabolismo , Janus Quinases/metabolismo , Hanseníase/imunologia , Hanseníase/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium leprae/patogenicidade
12.
Sci Rep ; 5: 16777, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608746

RESUMO

HIV-1 co-infection with human parasitic diseases is a growing public health problem worldwide. Leishmania parasites infect and replicate inside macrophages, thereby subverting host signaling pathways, including the response mediated by PKR. The HIV-1 Tat protein interacts with PKR and plays a pivotal role in HIV-1 replication. This study shows that Tat increases both the expression and activation of PKR in Leishmania-infected macrophages. Importantly, the positive effect of Tat addition on parasite growth was dependent on PKR signaling, as demonstrated in PKR-deficient macrophages or macrophages treated with the PKR inhibitor. The effect of HIV-1 Tat on parasite growth was prevented when the supernatant of HIV-1-infected macrophages was treated with neutralizing anti-HIV-1 Tat prior to Leishmania infection. The addition of HIV-1 Tat to Leishmania-infected macrophages led to inhibition of iNOS expression, modulation of NF-kB activation and enhancement of IL-10 expression. Accordingly, the expression of a Tat construct containing mutations in the basic region (49-57aa), which is responsible for the interaction with PKR, favored neither parasite growth nor IL-10 expression in infected macrophages. In summary, we show that Tat enhances Leishmania growth through PKR signaling.


Assuntos
HIV-1/metabolismo , Leishmania/crescimento & desenvolvimento , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Interleucina-10/metabolismo , Espaço Intracelular/parasitologia , Leishmania/metabolismo , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/enzimologia , Macrófagos/parasitologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
13.
Biochem Biophys Res Commun ; 467(1): 115-20, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26408905

RESUMO

The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genes de Protozoários , Sistema de Sinalização das MAP Quinases , Proteínas Monoméricas de Ligação ao GTP/genética , Fenótipo , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
14.
J Infect Dis ; 210(4): 656-66, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24634497

RESUMO

Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis-induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).


Assuntos
Leishmania mexicana/metabolismo , Leishmaniose Cutânea/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Antígenos de Superfície/metabolismo , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptor 2 Toll-Like/metabolismo
15.
PLoS One ; 8(9): e76233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312681

RESUMO

BACKGROUND: Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. CONCLUSIONS/SIGNIFICANCE: The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression.


Assuntos
Lisofosfatidilcolinas/farmacologia , Macrófagos Peritoneais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Antagonismo de Drogas , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
16.
Parasitology ; 139(12): 1562-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23036534

RESUMO

LACK (Leishmania analogue of the receptor kinase C) is a conserved protein in the protozoan of the genus Leishmania, which is associated with the immunopathogenesis and susceptibility of BALB/c mice to Leishmania major infection. We previously demonstrated that intranasal immunization with a plasmid DNA encoding the p36/LACK leishmanial antigen (pCI-neo-LACK) followed by challenge 7 days after a booster dose effectively protects BALB/c mice against both cutaneous and visceral leishmaniasis. In the present study, the correlation between systemic mRNA expression after nasal DNA uptake, and the duration of protective immunity was addressed. LACK mRNA transcripts were detected in the spleen, brain, cervical lymph nodes and popliteal lymph nodes as early as 7 days, lasting 3 months after vaccination with pCI-neo-LACK. The kinetics of transcript expression correlated with enhanced cutaneous hypersensitivity against parasite antigens. Leishmania chagasi infection at 7 days or 3 months, but not 6 months after vaccination resulted in significantly lower parasite loads as compared with non-vaccinated controls. Protection also correlated with enhanced spleen cell responsiveness to parasite antigens leading to increased IFN- γ and IL-4 and decreased IL-10 production. Together, these data demonstrate that the protection conferred by the intranasal DNA vaccine lasts at least 3 months and is associated with expression of vaccine mRNA in peripheral organs.


Assuntos
Antígenos de Protozoários/imunologia , Regulação da Expressão Gênica , Leishmaniose Visceral/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Administração Intranasal , Animais , Proliferação de Células , Leishmaniose Visceral/prevenção & controle , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/administração & dosagem , RNA Mensageiro/imunologia , Linfócitos T/imunologia
17.
PLoS One ; 7(7): e41772, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848596

RESUMO

ExoU, a Pseudomonas aeruginosa cytotoxin injected into host cytosol by type III secretion system, exhibits a potent proinflammatory activity that leads to a marked recruitment of neutrophils to infected tissues. To evaluate the mechanisms that account for neutrophil infiltration, we investigated the effect of ExoU on IL-8 secretion and NF-κB activation. We demonstrate that ExoU increases IL-8 mRNA and protein levels in P. aeruginosa-infected epithelial and endothelial cell lines. Also, ExoU induces the nuclear translocation of p65/p50 NF-κB transactivator heterodimer as well as NF-κB-dependent transcriptional activity. ChIP assays clearly revealed that ExoU promotes p65 binding to NF-κB site in IL-8 promoter and the treatment of cultures with the NF-κB inhibitor Bay 11-7082 led to a significant reduction in IL-8 mRNA levels and protein secretion induced by ExoU. These results were corroborated in a murine model of pneumonia that revealed a significant reduction in KC secretion and neutrophil infiltration in bronchoalveolar lavage when mice were treated with Bay 11-7082 before infection with an ExoU-producing strain. In conclusion, our data demonstrate that ExoU activates NF-κB, stimulating IL-8 expression and secretion during P. aeruginosa infection, and unveils a new mechanism triggered by this important virulence factor to interfere in host signaling pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Pseudomonas aeruginosa/fisiologia , Animais , Proteínas de Bactérias/biossíntese , Líquido da Lavagem Broncoalveolar/microbiologia , Capilares/citologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Regulação da Expressão Gênica , Interleucina-8/genética , Camundongos , Infiltração de Neutrófilos , Pseudomonas aeruginosa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia
18.
Biochem Biophys Res Commun ; 419(1): 38-42, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22326867

RESUMO

The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas Disease, undergoes through a complex life cycle where rounds of cell division and differentiation occur initially in the gut of triatominae vectors and, after transmission, inside of infected cells in vertebrate hosts. Members of the Ras superfamily of GTPases are molecular switches which play pivotal regulatory functions in cell growth and differentiation. We have previously described a novel GTPase in T. cruzi, TcRjl, which belongs to the RJL family of Ras-related GTP binding proteins. Here we show that most of TcRjl protein is found bound to GTP nucleotides and may be locked in this stage. In addition, we show that TcRjl is located close to the kinetoplast, in a region corresponding possibly to flagellar pocket of the parasite and the expression of a dominant-negative TcRjl construct (TcRjlS37N) displays a significative growth phenotype in reduced serum medium. Remarkably, overexpression of TcRjl inhibits differentiation of epimastigotes to trypomastigote forms and promotes the accumulation of intermediate differentiation stages. Our data suggest that TcRjl might play a role in the control of the parasite growth and differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Interações Hospedeiro-Parasita , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Trypanosoma cruzi/citologia , Trypanosoma cruzi/enzimologia
19.
Eur J Pharmacol ; 670(1): 272-9, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925494

RESUMO

It is widely accepted that tumor necrosis factor alpha (TNF-α) plays a critical role in the development of tissue and nerve damage in leprosy and during the reactional episodes of acute inflammation. Thalidomide (N-α-phthalimidoglutarimide), a drug used to treat leprosy reaction, modulates immune response, inhibits inflammation and NF-κB activity. Here we investigated whether thalidomide inhibits NF-κB activation induced by Mycobacterium leprae, p38 and ERK1/2 MAPK activation. EMSA and supershift assays were performed to investigate NF-κB activation in response to M. leprae and its modulation following in vitro treatment with thalidomide. Luciferase assay was assayed in transfected THP-1 cells to determine NF-κB transcriptional activity. Flow cytometry and immunofluorescence were used to investigate p65 accumulation in the nucleus. Immunoblotting was used to investigate p38 and ERK1/2 phosphorylation. Following activation of PBMC and monocytes with M. leprae, the formation and nuclear localization of NF-κB complexes composed mainly of p65/p50 and p50/p50 dimers was observed. Induction of NF-κB activation and DNA binding activity was inhibited by thalidomide. The drug also reduced M. leprae-induced TNF-α production and inhibited p38 and ERK1/2 activation. Definition of the activation mechanisms in cells stimulated with M. leprae can lead to the development of new therapy applications to modulate NF-κB activation and to control the inflammatory manifestations due to enhanced TNF-α response as observed in leprosy and in leprosy reactions.


Assuntos
Hansenostáticos/farmacologia , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/patogenicidade , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/microbiologia , DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Hanseníase/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
FASEB J ; 25(12): 4162-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21846836

RESUMO

We investigated the type I interferon (IFN-1)/PKR axis in the outcome of the Leishmania (Leishmania) amazonensis infection, along with the underlying mechanisms that trigger and sustain this signaling pathway. Reporter assays of cell extracts from RAW-264.7 macrophages infected with L. (L.) amazonensis or HEK-293T cells cotransfected with TLR2 and PKR promoter constructions were employed. Primary macrophages of TLR2-knockout (KO) or IFNR-KO mice were infected, and the levels of PKR, IFN-1, and superoxide dismutase 1 (SOD1) transcript levels were investigated and compared. Immunohistochemical analysis of human biopsy lesions was evaluated for IFN-1 and PKR-positive cells. Leishmania infection increased the expression of PKR and IFN-ß on induction of PKR-promoter activity. The observed effects required the engagement of TLR2. TLR2-KO macrophages expressed low IFN-ß and PKR levels postinfection with a reduced parasite load. We also revealed the requirement of PKR signaling for Leishmania-induced IFN-1 expression, responsible for sustaining PKR expression and enhancing infection. Moreover, during infection, SOD1 transcripts increased and were also enhanced when IFN-1 was added to the cultures. Remarkably, SOD1 expression was abrogated in infected, dominant-negative PKR-expressing cells. Finally, lesions of patients with anergic diffuse cutaneous leishmaniasis exhibited higher levels of PKR/IFN-1-expressing cells compared to those with single cutaneous leishmaniasis. In summary, we demonstrated the mechanisms and relevance of the IFN-1/PKR axis in the Leishmania infection.


Assuntos
Interferon Tipo I/metabolismo , Leishmania mexicana , Leishmaniose Cutânea/enzimologia , Leishmaniose Cutânea/imunologia , Receptor 2 Toll-Like/metabolismo , eIF-2 Quinase/metabolismo , Animais , Glicoesfingolipídeos/imunologia , Interações Hospedeiro-Parasita , Humanos , Leishmania mexicana/imunologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/genética , Leishmaniose Tegumentar Difusa/enzimologia , Leishmaniose Tegumentar Difusa/genética , Leishmaniose Tegumentar Difusa/imunologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Regiões Promotoras Genéticas , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Transfecção , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA