Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36833345

RESUMO

Among Meliponini species, c-heterochromatin can occupy large portions of chromosomes. This characteristic could be useful for understanding evolutionary patterns of satellite DNAs (satDNAs), although few sequences have been characterized in these bees. In Trigona, phylogenetically represented by clades A and B, the c-heterochromatin is mostly located in one chromosome arm. Here we used different techniques, including restriction endonucleases and genome sequencing followed by chromosomal analysis, to identify satDNAs that may be contributing to the evolution of c-heterochromatin in Trigona. Our results revealed a highly abundant ThyaSat01-301 satDNA, corresponding to about 13.77% of the Trigona hyalinata genome. Another seven satDNAs were identified, one corresponding to 2.24%, and the other six corresponding to 0.545% of the genome. The satDNA ThyaSat01-301 was shown to be one of the main constituents of the c-heterochromatin of this species, as well as of other species belonging to clade B of Trigona. However, this satDNA was not observed on the chromosomes of species from clade A, demonstrating that the c-heterochromatin is evolving divergently between species of clade A and B, as a consequence of the evolution of repetitive DNA sequences. Finally, our data suggest the molecular diversification of the karyotypes, despite a conservated macrochromosomal structure on the genus.


Assuntos
DNA Satélite , Heterocromatina , Abelhas/genética , Animais , Evolução Molecular , Mapeamento Cromossômico , Sequência de Bases
2.
Cytogenet Genome Res ; 161(10-11): 520-528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34923489

RESUMO

The genus Partamona includes 33 species of stingless bees, of which 11 were studied cytogenetically. The main goal of this study was to propose a hypothesis about chromosomal evolution in Partamona by combining molecular and cytogenetic data. Cytogenetic analyses were performed on 3 Partamona species. In addition, the molecular phylogeny included mitochondrial sequences of 11 species. Although the diploid number was constant within the genus, 2n = 34, B chromosomes were reported in 7 species. Cytogenetic data showed karyotypic variations related to chromosome morphology and the amount and distribution of heterochromatin and repetitive DNA. The molecular phylogenetic reconstruction corroborated the monophyly of the genus and separated the 2 clades (A and B). This separation was also observed in the cytogenetic data, in which species within each clade shared most of the cytogenetic characteristics. Furthermore, our data suggested that the B chromosome in the genus Partamona likely originated from a common ancestor of the species that have it in clade B and, through interspecific hybridization, it appeared only in Partamona rustica from clade A. Based on the above, Partamona is an interesting genus for further investigations using molecular mapping of B chromosomes as well as for broadening phylogenetic data.


Assuntos
Abelhas/genética , Cromossomos de Insetos/genética , Evolução Molecular , Animais , Abelhas/classificação , Heterocromatina/genética , Cariótipo , Cariotipagem , Masculino , Filogenia
3.
Chromosoma ; 130(4): 251-262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34837120

RESUMO

Satellite DNAs (satDNAs) and transposable elements (TEs) are among the main components of constitutive heterochromatin (c-heterochromatin) and are related to their functionality, dynamics, and evolution. A peculiar case regarding the quantity and distribution of c-heterochromatin is observed in the genus of bees, Melipona, with species having a low amount of heterochromatin and species with high amount occupying almost all chromosomes. By combining low-pass genome sequencing and chromosomal analysis, we characterized the satDNAs and TEs of Melipona quadrifasciata (low c-heterochromatin) and Melipona scutellaris (high low c-heterochromatin) to understand c-heterochromatin composition and evolution. We identified 15 satDNA families and 20 TEs for both species. Significant variations in the repeat landscapes were observed between the species. In M. quadrifasciata, the repetitive fraction corresponded to only 3.78% of the genome library studied, whereas in M. scutellaris, it represented 54.95%. Massive quantitative and qualitative changes contributed to the differential amplification of c-heterochromatin, mainly due to the amplification of exclusive repetitions in M. scutellaris, as the satDNA MscuSat01-195 and the TE LTR/Gypsy_1 that represent 38.20 and 14.4% of its genome, respectively. The amplification of these two repeats is evident at the chromosomal level, with observation of their occurrence on most c-heterochromatin. Moreover, we detected repeats shared between species, revealing that they experienced mainly quantitative variations and varied in the organization on chromosomes and evolutionary patterns. Together, our data allow the discussion of patterns of evolution of repetitive DNAs and c-heterochromatin that occurred in a short period of time, after separation of the Michmelia and Melipona subgenera.


Assuntos
Genômica , Heterocromatina , Animais , Abelhas/genética , Mapeamento Cromossômico , Elementos de DNA Transponíveis , DNA Satélite/genética , Evolução Molecular , Heterocromatina/genética
4.
Cytogenet Genome Res ; 160(11-12): 711-718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33752199

RESUMO

The characterization of karyotypes is an important aspect in understanding the structure and evolution of genomes. Polybia is a genus of social wasps of the family Vespidae. This genus has 58 species, but for only 8 of these chromosome number and morphology have been reported in the literature. The aim of this study was to describe and characterize the Polybia fastidiosuscula Saussure karyotype, presenting the first case of a B chromosome in Vespidae. In addition, we investigated the chromatin composition of this species through C-banding, base-specific fluorochrome staining, and physical mapping of 7 microsatellites and 18S rDNA. Four colonies of P. fastidiosuscula from Minas Gerais and Paraná states, Brazil, were analyzed. The chromosome number identified was 2n = 34, and 2 colonies presented a B chromosome. We characterized the chromatin composition of this species, analyzing the existence of different microsatellite-rich heterochromatic regions which are also enriched with AT or GC base pairs. We suggest an intraspecific origin of the B chromosome based on the homology of the heterochromatic composition with A chromosomes and also verify that the TTAGG and TCAGG sequences are not telomeric, but only microsatellites that occur in the centromeres of most chromosomes, as well as GAG and CGG.


Assuntos
Cromatina/genética , Cromossomos de Insetos/genética , Cariótipo , Repetições de Microssatélites/genética , Vespas/genética , Animais , Pareamento de Bases , Sequência de Bases , Brasil , Bandeamento Cromossômico , Feminino , RNA Ribossômico 18S/genética , Vespas/classificação
5.
An Acad Bras Cienc ; 85(3): 937-44, 2013 09.
Artigo em Inglês | MEDLINE | ID: mdl-23969851

RESUMO

Euglossini are solitary bees considered important pollinators of many orchid species. Information regarding chromosome organization is available for only a small number of species in this group. In the present work, the species Euglossa townsendi and E. carolina were analyzed by cytogenetic techniques to collect information that may aid the understanding of their evolution and chromosomal organization. The chromosome number found was n = 21 for males and 2n = 42 for females in the two species. The distribution and amount of heterochromatin regions differed in the two species analyzed, where they were classified as “high” or “low” heterochromatin content, similarly to what has already been performed in social bee species of the genus Melipona. Banding patterns found in this study suggest that other mechanisms may have occurred in the karyotype evolution of this group, unlike those suggested for social bees and ants. Karyotype evolution of solitary bees appears to have occurred as an event separate from other hymenopterans and did not involve chromosome fissions and heterochromatin amplification.


Assuntos
Abelhas/genética , Evolução Biológica , Análise Citogenética , Animais , Abelhas/classificação , Feminino , Cariótipo , Masculino , Orchidaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA