Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080724

RESUMO

Fiber-reinforced composites are among the most investigated and industrially applied materials. Many studies on these composites using fibers, especially with natural fibers, were made in response to an urgent action for ambient preservation. A particularly relevant situation exists nowadays in the area of materials durability. In this respect, no studies on water-immersion-accelerated aging in fique fiber-epoxy composites are reported. This work aimed to fill this gap by investigating the epoxy matrix composites reinforced with 40 vol% fique fabric. The epoxy matrix and the composite, both unaged and aged, were characterized by weight variation, water absorption, morphology, colorimetry (CIELAB method), Fourier transform infrared spectroscopy (FTIR) and dynamic-mechanical analysis (DMA). The main results were that degradation by water presents appearance of complex microfibril structures, plasticization of epoxy resin, and debonding of the fique fiber/epoxy matrix. The most intense color change was obtained for the water-immersion-aged epoxy by 1440 h. Cole-Cole diagrams revealed the heterogeneity of the materials studied.

2.
Polymers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833335

RESUMO

Dynamic mechanical analysis (DMA) is one of the most common methods employed to study a material's viscoelastic properties. The effect of thermal aging on plain epoxy and a fique fabric-reinforced epoxy composite was investigated by comparing the mass loss, morphologies, and DMA properties of aged and unaged samples. In fact, thermal aging presents a big challenge for the high-temperature applications of natural fiber composites. In this work, both plain epoxy and fique fabric-reinforced epoxy composite were found to have different molecular mobility. This leads to distinct transition regions, with different changes in intensity caused by external loadings from time-aging. Three exponentially modified Gauss distribution functions (EMGs) were applied to loss factor curves of fique fabric-reinforced epoxy composite and plain epoxy, which allowed identifying three possible mobility ranges. From these results it was proposed that the thermal degradation behavior of natural fibers, especially fique fiber and their composites, might be assessed, based on their structural characteristics and mechanical properties.

3.
Polymers (Basel) ; 13(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34451267

RESUMO

Polymer composites reinforced with natural fabric have recently been investigated as possible ballistic armor for personal protection against different levels of ammunition. In particular, fabric made of fique fibers, which is extracted from the leaves of the Furcraea andina, was applied as reinforcement for polymer composites used in a multilayered armor system (MAS). The superior performance of the fique fabric composites as a second MAS layer motivated this brief report on the determination of the absorbed energy and capability to limit velocity in the stand-alone ballistic tests. The single plates of epoxy composites, which were reinforced with up to 50 vol% of fique fabric, were ballistic tested as targets against 7.62 mm high-speed, ~840 m/s, impact ammunition for the first time. The results were statistically analyzed by the Weibull method and ANOVA. The absorbed energies of the 200-219 J and limit velocities of 202-211 m/s were found statistically similar to the epoxy composites reinforced with the fique fabric from 15 to 50 vol%. Predominantly, these findings are better than those reported for the plain epoxy and aramid fabric (KevlarTM) used as stand-alone plates with the same thickness. Macrocracks in the 15 and 30 vol% fique fabric composites compromise their application as armor plates. The delamination rupture mechanism was revealed by scanning electron microscopy. By contrast, the integrity was maintained in the 40 and 50 vol% composites, ensuring superior ballistic protection compared to the use of KevlarTM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA