Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(3): e0247931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657159

RESUMO

Palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster cv. Marandu] is widely used in Brazil and is typically managed with little or no N fertilizer, which often leads to pasture decline in the long-term. The current relationship between beef price and fertilizer cost in Brazil does not favor fertilizer use in pastures. Legume inclusion is an alternative to adding fertilizer N, but often legumes do not reach a significant proportion (> 30%) in pasture botanical composition. This study evaluated herbage responses to N inputs and pasture species composition, under intermittent stocking. Treatments included palisadegrass-forage peanut (Arachis pintoi Krapov. & W.C. Greg. cv. Amarillo) mixture (mixed), unfertilized palisadegrass (control), and palisadegrass fertilized with 150 kg N ha-1 yr-1 (fertilized). Treatments were applied over two rainy seasons with five growth cycle (GC) evaluations each season. Response variables included herbage biomass, herbage accumulation, morphological components, total aboveground N of forage peanut (TAGNFP), and contribution of biological N2 fixation (BNF). Herbage biomass was greater for fertilized palisadegrass [5850 kg dry matter (DM) ha-1] than for the palisadegrass-forage peanut mixture (3940 kg DM ha-1), while the unfertilized palisadegrass (4400 kg DM ha-1) did not differ from the mixed pasture. Nitrogen fertilizer increased leaf mass of palisadegrass (2490 kg DM ha-1) compared with the control and mixed treatments (1700 and 1310 kg DM ha-1, respectively). The contribution of BNF to the forage peanut ranged from 79 to 85% and 0.5 to 5.5 kg N ha-1 cycle-1. Overall, benefits from forage peanut were minimal because legume percentage was less than 10%, while N input in the system by N-fertilizer increased palisadegrass herbage biomass.


Assuntos
Arachis , Fertilizantes , Gado , Animais , Arachis/crescimento & desenvolvimento , Biomassa , Brasil , Bovinos , Fabaceae/crescimento & desenvolvimento , Fertilizantes/análise , Gado/crescimento & desenvolvimento
2.
J Anim Sci ; 97(11): 4625-4634, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31588955

RESUMO

Livestock production systems are an essential agribusiness activity in Brazil, but a critical challenge of Brazilian farmers is to maintain the equilibrium of the ecosystem, using herbage resources efficiently with a minimum impact on the environment. Nitrogen (N) fertilization and the inclusion of forage legumes into tropical grass pastures are management strategies which increase the productivity and nutritive value of pastures and may also affect methane (CH4) production by ruminants. The objective of this study was to examine the effects of either fertilizing palisade grass pastures with N or including the forage peanut (Arachis pintoi) into grass pastures on enteric CH4 emission, microbial protein production in the rumen via purine derivatives in the urine, and N balance. Twenty-one nonlactating crossbred dairy heifers were used in a completely randomized design with 3 treatments. The treatments consisted of pastures of palisade grass without N fertilization (control), fertilized with urea (fertilized), and palisade grass mixed with forage peanut (mixed). Seven animals (replications) were used to evaluate dry matter intake, digestibility, CH4 emission, urea, purine derivatives, and volume of urine, and N ingestion and excretion. Four paddocks (replications) were used to measure herbage mass; morphological, botanical, and chemical composition of herbage; and herbage allowance. The CH4 emissions were determined using the sulfur hexafluoride (SF6) tracer gas technique. The efficiency of N utilization (ENU) was calculated using the N balance data. Crude protein (CP) concentration of herbage increased with fertilization or legumes inclusion (P < 0.0001) while neutral detergent fiber (NDF) concentration decreased (P = 0.0355). The leaf allowance was higher in the fertilized treatment (P = 0.0294). Only uric acid excretion increased with N fertilization (P = 0.0204). The ENU was not affected by fertilized or mixed compared to control and averaged 55% (P = 0.8945). The enteric CH4 production was similar between treatments and averaged 129 g/d (P = 0.3989). We concluded that the changes in chemical composition of herbage provided by N fertilization or the inclusion of the legume showed no reduction in enteric CH4 emissions, but the ENU was more significant than previous studies with palisade grass, suggesting that different management strategies might alter the ENU under grazing conditions.


Assuntos
Ração Animal/análise , Arachis , Bovinos/fisiologia , Metano/metabolismo , Nitrogênio/metabolismo , Poaceae , Animais , Brasil , Indústria de Laticínios , Dieta/veterinária , Fibras na Dieta/metabolismo , Ecossistema , Fabaceae , Feminino , Fertilizantes , Valor Nutritivo , Rúmen/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA