RESUMO
The specific role of different strength measures on mortality risk needs to be clarified to gain a better understanding of the clinical importance of different muscle groups, as well as to inform intervention protocols in relation to reducing early mortality. The aim of the systematic review and meta-analysis was to determine the relationship between muscular strength and risk of cancer mortality. Eligible cohort studies were those that examined the association between muscular strength, as assessed using validated tests, and cancer mortality in healthy youth and adults. The hazard ratio (HR) estimates obtained were pooled using random effects meta-analysis models. The outcome was cancer mortality assessed using the HR (Cox proportional hazards model). Eleven prospective studies with 1 309 413 participants were included, and 9787 cancer-specific deaths were reported. Overall, greater handgrip (HR = 0.97, 95% CI, 0.92-1.02; P = .055; I2 = 18.9%) and knee extension strength (HR = 0.98, 95% CI, 0.95-1.00; P = .051; I2 = 60.6%) were barely significant associated with reduced risk of cancer mortality. Our study suggests that higher level of muscular strength is not statistically associated with lower risk of cancer mortality.
Assuntos
Força da Mão , Neoplasias/mortalidade , Humanos , Modelos de Riscos ProporcionaisRESUMO
BACKGROUND/OBJECTIVES: Indices predictive of central obesity include waist circumference (WC) and waist-to-height ratio (WHtR). These data are lacking for Colombian adults. This study aims at establishing smoothed centile charts and LMS tables for WC and WHtR; appropriate cutoffs were selected using receiver-operating characteristic analysis based on data from the representative sample. SUBJECTS/METHODS: We used data from the cross-sectional, national representative nutrition survey (ENSIN, 2010). A total of 83 220 participants (aged 20-64) were enroled. Weight, height, body mass index (BMI), WC and WHtR were measured and percentiles calculated using the LMS method (L (curve Box-Cox), M (curve median), and S (curve coefficient of variation)). Receiver operating characteristics curve analyses were used to evaluate the optimal cutoff point of WC and WHtR for overweight and obesity based on WHO definitions. RESULTS: Reference values for WC and WHtR are presented. Mean WC and WHtR increased with age for both genders. We found a strong positive correlation between WC and BMI (r=0.847, P< 0.01) and WHtR and BMI (r=0.878, P<0.01). In obese men, the cutoff point value is 96.6 cm for the WC. In women, the cutoff point value is 91.0 cm for the WC. Receiver operating characteristic curve for WHtR was also obtained and the cutoff point value of 0.579 in men, and in women the cutoff point value was 0.587. A high sensitivity and specificity were obtained. CONCLUSIONS: This study presents first reference values of WC and WHtR for Colombians aged 20-64. Through LMS tables for adults, we hope to provide quantitative tools to study obesity and its complications.