Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 25(6): 924-934, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549227

RESUMO

Climate change is increasing the frequency of extreme events such as droughts, limiting plant growth and productivity. Exogenous application of plant growth regulators, such as 24-epibrassinolide (EBR), might be a solution as this molecule is organic, eco-friendly, and biodegradable. This is the first research to examine possible roles of EBR on the hydraulic safety margin, physiological behaviour, and metabolism in Carapa guianensis Aubl. (Meliaceae) exposed to drought. C. guianensis is a widely distributed tree in tropical forests of the Amazon. The objective was to determine whether EBR can improve tolerance to water deficit in young C. guianensis by measuring hydraulic traits, nutritional, biochemical and physiological responses, and biomass. The experiment had four randomized treatments: two water conditions (control and water deficit) and two concentrations of EBR (0 and 100 nM EBR). EBR increased the water potential and hydraulic safety margin, increased CO2 fixation, and improved stomatal performance. EBR also stimulated antioxidant defences (SOD, CAT, APX, and POX). Overall, tretreatment with EBR improved drought tolerance of young C. guianensis plants.


Assuntos
Antioxidantes , Secas , Antioxidantes/metabolismo , Brassinosteroides/metabolismo , Água/metabolismo , Folhas de Planta/metabolismo
2.
Plant Biol (Stuttg) ; 23(1): 57-65, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841475

RESUMO

The soybean is a legume that is widely cultivated in many countries due to the high levels of protein and oil contained in its seed, and is used for human and animal nutrition. However, salinity affects more than 800 million hectares worldwide, limiting global agricultural production. The aim of this research was to evaluate the structural behaviour of the roots and stems under progressive salt stress, detailing the possible anatomical modifications to these organs in soybean plants during this stress. The plants were randomized into five treatments (0, 50, 100, 150 and 200 mm NaCl). All the root regions studied and exposed to 100 mm Na+ exhibited increases in the epidermis and endodermis and formation of lysogenic aerenchyma with increasing salinity, revealing the protective roles of these structures in reducing Na+ influx. In the stem, increases in the cortex and pith in the first internode subject to 100 mm Na+ suggest anatomical responses that aim to minimize oxidative stress. Soybean plants subjected to progressive salt stress (>50 mm Na+ ) avoided cavitation and loss of function linked to vessel elements, reducing the metaxylem in all the root and stem regions analysed. Finally, our results confirm anatomical changes to the roots and stems.


Assuntos
Glycine max/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Caules de Planta/anatomia & histologia , Estresse Salino , Glycine max/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA