Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 630: 126-140, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477110

RESUMO

We review data from coastal Pacific Panama and other tropical coasts with two aims. First, we defined inputs and losses of nitrogen (N) mediating connectivity of watersheds, mangrove estuaries, and coastal sea. N entering watersheds-mainly via N fixation (79-86%)-was largely intercepted; N discharges to mangrove estuaries (3-6%), small compared to N inputs to watersheds, nonetheless significantly supplied N to mangrove estuaries. Inputs to mangrove estuaries (including watershed discharges, and marine inputs during flood tides) were matched by losses (mainly denitrification and export during ebb tides). Mangrove estuary subsidies of coastal marine food webs take place by export of forms of N [DON (62.5%), PN (9.1%), and litter N (12.9%)] that provide dissimilative and assimilative subsidies. N fixation, denitrification, and tidal exchanges were major processes, and DON was major form of N involved in connecting fluxes in and out of mangrove estuaries. Second, we assessed effects of watershed forest cover on connectivity. Decreased watershed forest cover lowered N inputs, interception, and discharge into receiving mangrove estuaries. These imprints of forest cover were erased during transit of N through estuaries, owing to internal N cycle transformations, and differences in relative area of watersheds and estuaries. Largest losses of N consisted of water transport of energy-rich compounds, particularly DON. N losses were similar in magnitude to N inputs from sea, calculated without considering contribution by intermittent coastal upwelling, and hence likely under-estimated. Pacific Panama mangrove estuaries are exposed to major inputs of N from land and sea, which emphasizes the high degree of bi-directional connectivity in these coupled ecosystems. Pacific Panama is still lightly affected by human or global changes. Increased deforestation can be expected, as well as changes in ENSO, which will surely raise watershed-derived loads of N, as well as significantly change marine N inputs affecting coastal coupled ecosystems.

2.
PLoS One ; 10(6): e0130015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066515

RESUMO

Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution.


Assuntos
Alismatales , Evolução Molecular , Complexo de Proteína do Fotossistema II , Plântula/metabolismo , Alismatales/genética , Alismatales/crescimento & desenvolvimento , Austrália , Mar Mediterrâneo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
3.
Ecotoxicol Environ Saf ; 72(7): 1832-41, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19615746

RESUMO

Portmán Bay, southeast Spain, contains the most seriously metal-contaminated sediments of the Mediterranean Sea. From 1958 to 1991, approximately 50 million tons of mine tailings were dumped into the bay, completely filling up the bay and dispersing over an extensive area of the continental platform and continental slope. The objective of our study was to characterize the nature and extent of metal contamination and the responses of natural communities to it and to assess the toxicity of the sediment deposits 10 years after mining had ceased. We studied the physical and chemical characteristics of the sediments and toxicity (of the porewater and sediment-water interface) using two sea urchin species (Arbacia lixula and Paracentrotus lividus). Metal bioavailability and patterns of macroinvertebrate community composition along the contamination gradient were also studied. Univariate and multivariate analyses showed positive correlation between the sediment metal concentrations associated to the all biological effects (sea urchins toxicity tests and benthic indices). The effects of sediment contamination on the benthic community structure are visible among sampling stations.


Assuntos
Ecotoxicologia/métodos , Sedimentos Geológicos/análise , Metais Pesados/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Mar Mediterrâneo , Metais Pesados/análise , Análise Multivariada , Ouriços-do-Mar/efeitos dos fármacos , Espanha , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA