Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38891521

RESUMO

N-alkyl-substituted polyacrylamides exhibit a thermal coil-to-globule transition in aqueous solution driven by an increase in hydrophobic interactions with rising temperature. With the aim of understanding the role of N-alkyl substituents in the thermal transition, this study focuses on the molecular interactions underlying the phase transition of poly(N,N-diethylacrylamide-co-N-ethylacrylamide) random copolymers. Poly(N,N-diethylacrylamide) (PDEAm), poly(N-ethylacrylamide) (PNEAm), and their random copolymers were synthesized by free radical polymerization and their chemical structure characterized spectroscopically. It was found that the values of the cloud-point temperature increased with PNEAm content, and particle aggregation processes took place, increasing the negative charge density on their surface. The cloud-point temperature of each copolymer decreased with respect to the theoretical values calculated assuming an absence of interactions. It is attributed to the formation of intra- and interchain hydrogen bonding in aqueous solutions. These interactions favor the formation of more hydrophobic macromolecular segments, thereby promoting the cooperative nature of the transition. These results definitively reveal the dominant mechanism occurring during the phase transition in the aqueous solutions of these copolymers.

2.
Heliyon ; 10(10): e31421, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813187

RESUMO

Galactomannans (GM) are hemicellulosic polysaccharides composed of D-mannopyranose chains linked by ß (1 â†’ 4) glycosidic linkages with branches of D-galactopyranose linked by α (1 â†’ 6) linkages. This polysaccharide is recognized for its hydrophilic character, as it is rich in hydroxyl groups (-OH). This chemical characteristic, combined with the absence of ionic charges, enables structural modifications such as transesterification of the fatty acid chains (FA), which provides a strategy for obtaining amphiphilic structures. The enzyme-catalyzed syntheses were carried out in DMSO with GM decanoate (GMD) and GM palmitate (GMP) at different molar ratios (0.5 and 1.0) and the resulting structures were evaluated with infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (CP/MAS 13C NMR) and differential scanning calorimetry (DSC). The FTIR spectrum confirmed the transesterification of GM with the appearance of a C[bond, double bond]O band (1730-1750 cm-1). These results were confirmed by the signals observed at 177 and 30 ppm in the CP/MAS 13C NMR spectrum, which corresponded to the C[bond, double bond]O groups of the esters and the terminal -CH3 groups of the FA chains, respectively. Finally, DSC showed glass transition temperatures (Tg) in the range 43-51 °C, while the melting temperatures (Tm) of the GM esters (59 °C) were not affected by different degrees of esterification (DE) for GMD (0.37 and 0.71) and GMP (0.47 and 0.57).

3.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612040

RESUMO

This study involved the synthesis and characterization of chitosan nanoparticles loaded with nobiletin (CNpN) and assessed their toxicity and cellular internalization in eukaryotic cell models (Saccharomyces cerevisiae and Candida albicans). Nanoparticles were prepared via the nanoprecipitation method and physicochemically characterized to determine their hydrodynamic diameter using dynamic light scattering (DLS), their surface charge through ζ-potential measurements, and their chemical structure via Fourier-transform infrared spectroscopy (FTIR). The hydrodynamic diameter and ζ-potential of chitosan nanoparticles (CNp) and CNpN were found to be 288.74 ± 2.37 nm and 596.60 ± 35.49 nm, and 34.51 ± 0.66 mV and 37.73 ± 0.19 mV, respectively. The scanning electron microscopy (SEM) images displayed a particle size of approximately 346 ± 69 nm, with notable sphericity for CNpN. FTIR analysis provided evidence of potential imine bonding between chitosan and nobiletin. Membrane integrity damage could be observed in both S. cerevisiae and C. albicans yeast stained with propidium iodide, demonstrating membrane integrity damage caused by CNp and CNpN, where higher concentration treatments inhibited the development of yeast cells. These findings suggest a selective therapeutic potential of CNpN, which could be promising for the development of antifungal and anticancer therapies. This study contributes to understanding the interaction between nanoparticles and eukaryotic cells, offering insights for future biomedical applications.

4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047783

RESUMO

A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (ß = 2.1; p = 0.00), Ki67 (ß = -1.39; p = 0.007), estrogen positive (ß = 1.57; p = 0.01), weight (ß = -0.09; p = 0.00), and visceral fat (ß = 0.004; p = 0.00). miRNA-30 was associated with LDL (ß = -0.012; p = 0.01) and HDL (ß = -0.02; p = 0.05). miRNA-155 was associated with visceral fat (ß = -0.0007; p = 0.05) and Ki67 (ß = -0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estado Nutricional , Antígeno Ki-67/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Biomarcadores/metabolismo
5.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111181

RESUMO

Extracellular vesicles (EVs) are implicated in several biological conditions, including bone metabolism disturbances in breast cancer patients (BCPs). These disorders hinder the adjustment of nutrition interventions due to changes in bone mineral density (BMD). The biophysical properties of EVs (e.g., size or electrostatic repulsion) affect their cellular uptake, however, their clinical relevance is unclear. In this study, we aimed to investigate the association between the biophysical properties of the plasma-derived EVs and BMDs in BCPs who received an individualized nutrition intervention during the first six months of antineoplastic treatment. As part of the nutritional assessment before and after the intervention, body composition including bone densitometry and plasma samples were obtained. In 16 BCPs, EVs were isolated using ExoQuick® and their biophysical properties were analyzed using light-scattering techniques. We found that the average hydrodynamic diameter of large EVs was associated with femoral neck bone mineral content, lumbar spine BMD, and neoplasms' molecular subtypes. These results provide evidence that EVs play a role in BCPs' bone disorders and suggest that the biophysical properties of EVs may serve as potential nutritional biomarkers. Further studies are needed to evaluate EVs' biophysical properties as potential nutritional biomarkers in a clinical context.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Vesículas Extracelulares , Osteossarcoma , Humanos , Feminino , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores , Densidade Óssea
6.
Biology (Basel) ; 11(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36290380

RESUMO

In the present study, a culture of Chaetoceros muelleri, a cosmopolitan planktonic diatom microalga present in the Sea of Cortez, was established under controlled laboratory conditions. A sulfated polysaccharide (CMSP) extraction was carried out from the biomass obtained, resulting in a yield of 2.2% (w/w of dry biomass). The CMSP sample was analyzed by Fourier transform infrared spectroscopy, showing bands ranging from 3405 to 590 cm-1 and a sulfate substitution degree of 0.10. Scanning electron microscopy with elemental analysis revealed that the CMSP particles are irregularly shaped with non-acute angles and contain sulfur. High-performance liquid chromatography coupled to a dynamic light-scattering detector yielded molecular weight (Mw), polydispersity index (PDI), intrinsic viscosity [η], and hydrodynamic radius (Rh) values of 4.13 kDa, 2.0, 4.68 mL/g, and 1.3 nm, respectively, for the CMSP. This polysaccharide did not present cytotoxicity in CCD-841 colon cells. The antioxidant activity and the glycemic index of the CMSP were 23% and 49, respectively, which gives this molecule an added value by keeping low glycemic levels and exerting antioxidant activity simultaneously.

7.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145283

RESUMO

Arabinoxylans (AX) microcapsules loaded with insulin were prepared by enzymatic gelation of AX, using a triaxial electrospray method. The microcapsules presented a spherical shape, with an average size of 250 µm. The behavior of AX microcapsules was evaluated using a simulator of the human intestinal microbial ecosystem. AX microcapsules were mainly (70%) degraded in the ascending colon. The fermentation was completed in the descending colon, increasing the production of acetic, propionic, and butyric acids. In the three regions of the colon, the fermentation of AX microcapsules significantly increased populations of Bifidobacterium and Lactobacillus and decreased the population of Enterobacteriaceae. In addition, the results found in this in vitro model showed that the AX microcapsules could resist the simulated conditions of the upper gastrointestinal system and be a carrier for insulin delivery to the colon. The pharmacological activity of insulin-loaded AX microcapsules was evaluated after oral delivery in diabetic rats. AX microcapsules lowered the serum glucose levels in diabetic rats by 75%, with insulin doses of 25 and 50 IU/kg. The hypoglycemic effect and the insulin levels remained for more than 48 h. Oral relative bioavailability was 13 and 8.7% for the 25 and 50 IU/kg doses, respectively. These results indicate that AX microcapsules are a promising microbiota-activated system for oral insulin delivery in the colon.

8.
Polymers (Basel) ; 14(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890550

RESUMO

The fungus Aspergillus parasiticus is a contaminant in agricultural crops and its eradication involves the indiscriminate use of harmful synthetic pesticides. In the search for antifungal agents of natural origin, chitosan (Q) and capsaicin (C) are coupled in the form of nanoparticles (Np), which can possess a direct application under specific conditions. Due to their small size, Np can cross through the cell wall, taking the cells into a pro-oxidant environment known as "oxidative stress", which presents when the reactive oxygen species (ROS) surpass the number of antioxidants in the cell. In the present investigation, nanoparticles of chitosan (Np Q) and nanoparticles of chitosan-capsaicin (Np QC) with an average diameter of 44.8 ± 20.6 nm and 111.1 ± 14.1 nm, respectively, were synthesized, and there was a zeta potential of + 25.6 ± 0.7 mV and + 26.8 ± 6.1 mV, respectively. The effect of the concentration of Np Q (A, B, C, and D), of Np QC (A, B, C, and D), and capsaicin in a solution (control) was evaluated on the viability of the spores, the accumulation of intracellular ROS, and the morphometric changes of A. parasiticus. Acute toxicity of the Np was determined utilizing bioassays with Artemia salina, and acute phytotoxicity was evaluated in lettuce seeds (Lactuca sativa). According to ROS results, capsaicin (control) did not induce oxidative stress in the cell; otherwise, it was observed to have an elevated (p < 0.05) accumulation of ROS when the concentration of Np Q increased. For both, Np Q and Np QC, an inverse physiological pattern relating spore viability and ROS accumulation in the fungus was found; the viability of spores decreased as the ROS accumulation increased. The spore viability of A. parasiticus diminished upon increasing the concentration of chitosan (0.3−0.4 mg/mL) in the Np, while the intracellular accumulation of ROS increased proportionally to the concentration of the nanomaterials in the treatments of Np Q and Np QC. On the other hand, Np QC presented a lower (p < 0.05) toxicological effect in comparison with Np Q, which indicates that the incorporation of bioactive compounds, such as capsaicin, into nanoparticles of chitosan is a strategy that permits the reduction of the toxicity associated with nanostructured materials.

9.
J Food Biochem ; 46(9): e14269, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722751

RESUMO

The consumption of cricket (Acheta domesticus, AD) has recently increased due to its high nutritional and bioactive compound contents. However, limited studies have explored the beneficial effects of AD consumption. Therefore, we aimed to evaluate the protective effect of a diet supplemented with AD flour on obesity control and its complications in an in vivo model. The chemical profiling of the AD showed an important protein content, chitin, and polyunsaturated fatty acids contents. For the in vivo study, a high-fructose and saturated fat diet (HFFD) was supplemented with AD (4% and 8%). The 8% AD supplementation reduced body weight gain (19%) and serum triglycerides (37%) in HFFD-fed rats. These benefits were related to a greater lipid excretion in feces (97%) and the partial inhibition of pancreatic lipase in vitro by the aqueous extract and the hydrolyzed proteins obtained from AD. Additionally, the 8% AD supplementation improved insulin resistance measured by the HOMA index (61%). Thus, 8% AD supplementation to HFFD-fed rats was effective in preventing obesity, dyslipidemia, and insulin resistance. PRACTICAL APPLICATIONS: Obesity is a risk factor for developing insulin resistance and dyslipidemia. Therefore, there is an increasing interest in consuming foods rich in bioactive compounds as therapeutic alternatives for managing the development of obesity and its complications. Edible insects, such as crickets, are attractive for treating obesity due to their content of protein, fiber, and polyunsaturated fatty acids. Studies have explored the effect of glycosaminoglycan (GAG)-enriched extracts from the cricket Gryllus bimaculatus against obesity. However, GAG content in crickets is low, and crickets are commonly consumed whole instead of extracts. The cricket Acheta domesticus (AD) is among the most rearing cricket species as it is easy to farm and has a better flavor. However, limited studies have explored the beneficial effects of AD consumption. This study demonstrates that AD prevents obesity and ameliorates dyslipidemia and insulin resistance. Therefore, AD is a valuable entomotherapeutic strategy to reduce the comorbidities associated with diet-induced obesity.


Assuntos
Resistência à Insulina , Animais , Dieta , Farinha , Frutose/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Ratos
10.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335533

RESUMO

The Diels-Alder reaction is recognized to generate highly selective and regiospecific cycloadducts. In this study, we carried out a rheological and kinetic study of N-furfuryl chitosan hydrogels based on the Diels-Alder click reaction with different poly(ethylene)glycol-maleimide derivatives in dilute aqueous acidic solutions. It was possible to prepare clear and transparent hydrogels with excellent mechanical properties. Applying the Winter and Chambon criterion the gel times were estimated at different temperatures, and the activation energy was calculated. The higher the temperature of gelation, the higher the reaction rate. The crosslinking density and the elastic properties seem to be controlled by the diffusion of the polymer segments, rather than by the kinetics of the reaction. An increase in the concentration of any of the two functional groups is accompanied by a higher crosslinking density regardless maleimide:furan molar ratio. The hydrogel showed an improvement in their mechanical properties as the temperature increases up to 70 °C. Above that, there is a drop in G' values indicating that there is a process opposing to the Diels-Alder reaction, most likely the retro-Diels-Alder.

11.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209032

RESUMO

In Mexico, the mango crop is affected by anthracnose caused by Colletotrichum species. In the search for environmentally friendly fungicides, chitosan has shown antifungal activity. Therefore, fungal isolates were obtained from plant tissue with anthracnose symptoms from the state of Guerrero in Mexico and identified with the ITS and ß-Tub2 genetic markers. Isolates of the Colletotrichum gloeosporioides complex were again identified with the markers ITS, Act, ß-Tub2, GADPH, CHS-1, CaM, and ApMat. Commercial chitosan (Aldrich, lot # STBF3282V) was characterized, and its antifungal activity was evaluated on the radial growth of the fungal isolates. The isolated anthracnose-causing species were C. chrysophilum, C. fructicola, C. siamense, and C. musae. Other fungi found were Alternaria sp., Alternaria tenuissima, Fusarium sp., Pestalotiopsis sp., Curvularia lunata, Diaporthe pseudomangiferae, and Epicoccum nigrum. Chitosan showed 78% deacetylation degree and a molecular weight of 32 kDa. Most of the Colletotrichum species and the other identified fungi were susceptible to 1 g L-1 chitosan. However, two C. fructicola isolates were less susceptible to chitosan. Although chitosan has antifungal activity, the interactions between species of the Colletotrichum gloeosporioides complex and their effect on chitosan susceptibility should be studied based on genomic changes with molecular evidence.


Assuntos
Antifúngicos/farmacologia , Quitosana/farmacologia , Colletotrichum , Mangifera/microbiologia , Colletotrichum/classificação , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/isolamento & purificação
12.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451333

RESUMO

This study aimed to investigate the effect of arabinoxylans (AX) partial de-esterification with feruloyl esterase on the polysaccharide conformational behavior, topographical features, and antioxidant activity. After enzyme treatment, the ferulic acid (FA) content in AX was reduced from 7.30 to 5.48 µg FA/mg polysaccharide, and the molecule registered a small reduction in radius of gyration (RG), hydrodynamic radius (Rh), characteristic ratio (C∞), and persistence length (q). A slight decrease in α and a small increase in K constants in the Mark-Houwink-Sakurada equation for partially de-esterified AX (FAX) suggested a reduction in molecule structural rigidity and a more expanded coil conformation, respectively, in relation to AX. Fourier transform infrared spectroscopy spectra of AX and FAX presented a pattern characteristic for this polysaccharide. Atomic force microscopy topographic analysis of FAX showed a more regular surface without larger hollows in relation to AX. The antioxidant activity of FAX, compared to AX, was reduced by 30 and 41% using both 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) methods, respectively. These results suggest that feruloyl esterase treatment of AX could offer a strategy to tailor AX chains conformation, morphological features, and antioxidant activity, impacting the development of advanced biomaterials for biomedical and pharmaceutical applications.

13.
Bioorg Med Chem ; 42: 116240, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116380

RESUMO

In this research, sorghum procyanidins (PCs) and procyanidin B1 (PB1) were encapsulated in gelatin (Gel) to form nanoparticles as a strategy to maintain their stability and bioactivity and for possible applications as inhibitors of metalloproteinases (MMPs) of the gelatinase type. Encapsulation was carried out by adding either PCs or PB1 to an aqueous solution of A- or B-type Gel (GelA or GelB) at different concentrations and pH. Under this procedure, the nanoparticles PCs-GelA, PCs-GelB, PB1-GelA, and PB1-GelB were synthesized and subsequently characterized by experimental and computational methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that all types of nanoparticles had sizes in the range of 22-138 nm and tended to adopt an approximately spherical morphology with a smooth surface, and they were immersed in a Gel matrix. Spectral analysis indicated that the nanoparticles were synthesized by establishing hydrogen bonds and hydrophobic interactions betweenGel and the PCs or PB1. Study of simulated gastrointestinal digestion suggested that PCs were not released from the Gel nanoparticles, and they maintained their morphology (SEM analysis) and antioxidant activity determined by Trolox-equivalent antioxidant capacity (TEAC) assay. Computational characterization carried out through molecular docking studies of PB1 with Gel or (pro-)metalloproteinase-2 [(pro-)MMP-2], as a model representative of the PCs, showed very favorable binding energies (around -5.0 kcal/mol) provided by hydrogen bonds, van der Waals interactions, and desolvation. Additionally, it was found that PB1 could act as a selective inhibitor of (pro-)MMP-2.


Assuntos
Biflavonoides/química , Catequina/química , Gelatina/química , Nanopartículas/química , Proantocianidinas/química , Sorghum/química , Biflavonoides/síntese química , Catequina/síntese química , Gelatina/síntese química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Proantocianidinas/síntese química
14.
Polymers (Basel) ; 11(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30960314

RESUMO

The procedures to obtain two types of acemannan (AC) physical gels and their respective aerogels are reported. The gelation was induced by the diffusion of an alkali or a non-solvent, then supercritical CO2 drying technology was used to remove the solvent out and generate the AC aerogels. Fourier-transform infrared spectroscopic analysis indicated that alkali diffusion produced extensive AC deacetylation. Conversely, the non-solvent treatment did not affect the chemical structure of AC. Both types of gels showed syneresis and the drying process induced further volume reduction. Both aerogels were mesoporous nanostructured materials with pore sizes up to 6.4 nm and specific surface areas over 370 m²/g. The AC physical gels and aerogels enable numerous possibilities of applications, joining the unique features of these materials with the functional and bioactive properties of the AC.

15.
Polymers (Basel) ; 10(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30966377

RESUMO

The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.

16.
J Sci Food Agric ; 98(3): 914-922, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28696544

RESUMO

BACKGROUND: Arabinoxylans (AX) are polysaccharides consisting of a backbone of xyloses with arabinose substituents ester-linked to ferulic acid (FA). The arabinose to xylose ratio (A/X) in AX may vary from 0.3 to 1.1. AX form covalent gels by cross-linking of FA but physical interactions between AX chains also contribute to the network formation. The present study aimed to investigate the rheological and microstructural characteristics of gels based on AX enzymatically modified in A/X. RESULTS: Tailored AX presented A/X ranging from 0.68 to 0.51 and formed covalent gels. Dimers of FA content and elasticity (G') increased from 0.31 to 0.39 g kg-1 AX and from 106 to 164 Pa when the A/X in the polysaccharide decreased from 0.68 to 0.51. Atomic force microscopy images of AX gels showed a sponge-like microstructure at A/X = 0.68, whereas, at lower values, gels presented a more compact microstructure. Scanning electron microscopy analysis of AX gels show an arrangement of different morphology, passing from an imperfect honeycomb (A/X = 0.68) to a flake-like microstructure (A/X = 0.51). CONCLUSION: Lower A/X values favor the aggregation of AX chains resulting in an increase in di-FA content, which improves the rheological and microstructural characteristics of the gel formed. © 2017 Society of Chemical Industry.


Assuntos
Arabinose/química , Extratos Vegetais/química , Triticum/química , Xilanos/química , Xilose/química , Biocatálise , Elasticidade , Manipulação de Alimentos , Géis/química , Glicosídeo Hidrolases/química , Lacase , Reologia , Viscosidade
17.
Polymers (Basel) ; 9(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966024

RESUMO

Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs), 1-butyl-3-methylimidazolium acetate (BMIMAc), and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc), in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR) spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m²/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

18.
Polymers (Basel) ; 9(5)2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-30970844

RESUMO

Arabinoxylans (AXs) with high ferulic acid (FA) content (7.18 µg/mg AXs) were cross-linked using laccase. Storage (G') modulus of AX solutions at 1% (AX-1) and 2% (AX-2) (w/v) registered maximum values of 409 Pa and 889 Pa at 180 min and 83 min, respectively. Atomic force microscopy revealed the grained and irregular surface of the AX-1 gel and the smoother surface without significant depressions of the AX-2 gel. Cured AX gels exhibited a liquid phase surrounding the samples indicating syneresis. The syneresis ratio percentage (% Rs) of the gels was registered over time reaching stabilization at 20 h. The % Rs was not significantly different between AX-1 (60.0%) and AX-2 (62.8%) gels. After 20 h of syneresis development, the dimers of the FA in the AX-1 and AX-2 gels significantly increased by 9% and 78%, respectively; moreover, the trimers of the FA in the AX-1 and AX-2 gels, by 94% and 300%, respectively. Scanning electron microscopy showed that, after syneresis stabilization, AX gels presented a more compact microstructure. Syneresis development in the gels of highly ferulated AXs could be related to the polymer network contraction due to the additional formation of dimers and trimers of the FA (cross-linking structures), which may act like a "zipping" process, increasing the polymer chains' connectivity.

19.
Carbohydr Polym ; 134: 92-101, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428104

RESUMO

A series of thermoresponsive copolymers based on chitosan-g-poly(N-vinylcaprolactam) were synthesized by amidation reaction using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as coupling reagent. The effect of molecular architecture on the thermoresponsive properties of the graft copolymers solutions was studied by varying the chain length of the grafted poly(N-vinylcaprolactam), PVCL, (in the range from 4 to 26 kDa) and the spacing between grafted chains onto the chitosan backbone. The most interesting characteristic of these copolymers is their solubility in water at temperatures below their lower critical solution temperature (LCST). These solutions presented a LCST between 36 and 44 °C, which decreases with the spacing and length of grafted PVCL chains onto the chitosan backbone, in contrast with the limited decrease of the LCST of PVCL above a critical M¯n value around 18 kDa. This behavior offers tangible possibilities for the preparation and application of sensitive bioactive formulations and "smart" drug delivery systems.


Assuntos
Caprolactama/análogos & derivados , Quitosana/análogos & derivados , Preparações de Ação Retardada/química , Polímeros/química , Caprolactama/síntese química , Caprolactama/química , Quitosana/síntese química , Preparações de Ação Retardada/síntese química , Concentração de Íons de Hidrogênio , Morfolinas/síntese química , Morfolinas/química , Polímeros/síntese química , Solubilidade , Temperatura , Água/química
20.
Carbohydr Polym ; 128: 220-7, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26005158

RESUMO

In this study, chitosan was chemically modified by reductive amination in a two-step process. The synthesis of N-(furfural) chitosan (FC) was confirmed by FT-IR and (1)H NMR analysis, and the degrees of substitution were estimated as 8.3 and 23.8%. The cross-linkable system of bismaleimide (BM) and FC shows that FC shared properties of furan-maleimide chemistry. This system produced non-reversible hydrogel networks by Diels-Alder cycloadditions at 85 °C. The system composed of BM and FC (23.8% substitution) generated stronger hydrogel networks than those of FC with an 8.3% degree of substitution. Moreover, the FC-BM system was able to produce hydrogel microspheres. Environmental scanning electron microscopy revealed the surface of the microspheres to be non-porous with small protuberances. In water, the microspheres swelled, increasing their volume by 30%. Finally, microspheres loaded with methylene blue were able to release the dye gradually, obeying second-order kinetics for times less than 600 min. This behavior suggests that diffusion is governed by the relaxation of polymer chains in the swelled state, thus facilitating drug release outside the microspheres.


Assuntos
Quitosana/química , Furaldeído/química , Hidrogéis/química , Maleimidas/química , Química Click , Reação de Cicloadição , Preparações de Ação Retardada/química , Espectroscopia de Ressonância Magnética , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA