Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Opt Lett ; 49(19): 5348-5351, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352953

RESUMO

Periodically poled lithium niobate (LN) waveguides based on quasi-phase matching schemes, benefiting from their high nonlinear coefficient (d33) and strong optical confinement, are widely employed for implementing efficient second-harmonic generation (SHG). Here, we report broadband SHG in z-cut chirped periodically poled lithium-niobate-on-insulator (CPPLNOI) ridge micro-waveguides. Nearly 90-nm-wide SHG at the telecom band is achieved, along with an averaged normalized efficiency of 7.5%/(W·cm2). We also demonstrate simultaneous generation of second as well as cascaded third and fourth harmonics under direct pumping of femtosecond pulses. This work would benefit applications for frequency conversion of a wideband coherent light source.

2.
Nano Lett ; 24(37): 11676-11682, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225551

RESUMO

Second-order nonlinearity gives rise to many distinctive physical phenomena, e.g., second-harmonic generation, which play an important role in fundamental science and various applications. Lithium niobate, one of the most widely used nonlinear crystals, exhibits strong second-order nonlinear effects and electro-optic properties. However, its moderate refractive index and etching sidewall angle limit its capability in confining light into nanoscales, thereby restricting its application in nanophotonics. Here, we exploit nanocavities formed by second-order circular Bragg gratings, which support resonant anapole modes, to achieve a 42 000-fold enhanced second-harmonic generation in thin-film lithium niobate. The nanocavity exhibits a record-high normalized conversion efficiency of 1.21 × 10-2 cm2/GW under the pump intensity of 1.9 MW/cm2. Besides, we also show s- and p-polarization-independent second-harmonic generation in elliptical Bragg nanocavities. This work could inspire the study of nonlinear optics at the nanoscale on thin-film lithium niobate, as well as other novel photonic platforms.

3.
ACS Appl Mater Interfaces ; 16(38): 50818-50825, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39254196

RESUMO

To contribute meaningfully to carbon dioxide (CO2) emissions reduction, CO2 electrolyzer technology will need to scale immensely. Bench-scale electrolyzers are the norm, with active areas <5 cm2. However, cell areas on the order of 100s or 1000s of cm2 will be required for industrial deployment. Here, we study the effects of increasing cell area, scaling over 2 orders of magnitude from a 5 cm2 lab-scale cell to an 800 cm2 pilot plant-scale cell. A direct scaling of the bench-scale cell architecture to the larger area results in a ∼20% drop in ethylene (C2H4) selectivity and an increase in the parasitic hydrogen (H2) evolution reaction (HER). We instrument an 800 cm2 electrolyzer cell to serve as a diagnostic tool and determine that nonuniformities in electrode compression and flow-influenced local CO2 availability are the key drivers of performance loss upon scaling. Machining of an initial 800 cm2 cell results in a standard deviation in MEA compression that is 7-fold that of a similarly produced 5 cm2 cell (0.009 mm). Using these findings, we redesign an 800 cm2 cell for compression tolerance and increased CO2 transport and achieve an H2 FE in the revised 800 cm2 cell similar to that of the 5 cm2 case (16% at 200 mA cm-2). These results demonstrate that by ensuring uniform compression and fluid flow, the CO2 electrolyzer area can be scaled over 100-fold and retain C2H4 selectivity (within 10% of small-scale selectivity).

4.
J Am Chem Soc ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331404

RESUMO

The electrochemical reduction of CO2 in acidic media offers the advantage of high carbon utilization, but achieving high selectivity to C2+ products at a low overpotential remains a challenge. We identified the chemical instability of oxide-derived Cu catalysts as a reason that advances in neutral/alkaline electrolysis do not translate to acidic conditions. In acid, Cu ions leach from Cu oxides, leading to the deactivation of the C2+-active sites of Cu nanoparticles. This prompted us to design acid-stable Cu cluster precatalysts that are reduced in situ to active Cu nanoparticles in strong acid. Operando Raman and X-ray spectroscopy indicated that the bonding between the Cu cluster precatalyst ligand and in situ formed Cu nanoparticles preserves a high density of undercoordinated Cu sites, resulting in a C2H4 Faradaic efficiency of 62% at a low overpotential. The result is a 1.4-fold increase in energy efficiency compared with previous acidic CO2-to-C2+ electrocatalytic systems.

5.
Chem Commun (Camb) ; 60(71): 9538-9541, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39140198

RESUMO

We present a smart roof that makes fragmented droplets from the impact of raindrops on superhydrophobic meshes and utilizes the droplets for agricultural spraying. This facile method transforms raindrops or waterdrops into uniform microdroplets, which can both reduce crop lodging induced by heavy rainfall, and realize uniform spraying of pesticides.

6.
Food Chem ; 460(Pt 3): 140697, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142200

RESUMO

Chinese traditional fermented sour meat has a unique flavor and nutritional value. The antioxidant activity of sour meat peptides is related to their molecular weights, amino acid compositions, and structural characteristics. Therefore, this study explores the relationships between them. The results indicate that sour meat peptides with molecular weights <1 kDa exhibit significant antioxidant properties both in vitro and in vivo. The smaller the molecular weights, the higher the content of typical amino acids with antioxidant activity (p <0.05), and the characteristic peaks of ultraviolet absorption decrease. The absorption peak at 284.5 nm blue-shifted, and the polarity of the microenvironment increased. The peak intensity and peak area of the Raman characteristic peaks of tyrosine residues and aliphatic amino acids were enhanced. In the secondary structure, there is a high content of ß-turns and a low content of α-helix, which are closely related to the enhancement of antioxidant activity.


Assuntos
Antioxidantes , Fermentação , Peptídeos , Antioxidantes/química , Peptídeos/química , Animais , Produtos da Carne/análise , Peso Molecular , Aminoácidos/química , Estrutura Secundária de Proteína , Camundongos , Alimentos Fermentados/análise
7.
Circulation ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185559

RESUMO

BACKGROUND: The Hippo pathway effector YAP (Yes-associated protein) plays an essential role in cardiomyocyte proliferation and heart regeneration. In response to physiological changes, YAP moves in and out of the nucleus. The pathophysiological mechanisms regulating YAP subcellular localization after myocardial infarction remain poorly defined. METHODS: We identified YAP acetylation at site K265 by in vitro acetylation followed by mass spectrometry analysis. We used adeno-associated virus to express YAP-containing mutations that either abolished acetylation (YAP-K265R) or mimicked acetylation (YAP-K265Q) and studied how acetylation regulates YAP subcellular localization in mouse hearts. We generated a cell line with YAP-K265R mutation and investigated the protein-protein interactors by YAP immunoprecipitation followed by mass spectrometry, then validated the YAP interaction in neonatal rat ventricular myocytes. We examined colocalization of YAP and TUBA4A (tubulin α 4A) by superresolution imaging. Furthermore, we developed YAP-K265R and αMHC-MerCreMer (MCM); Yap-loxP/K265R mutant mice to examine the pathophysiological role of YAP acetylation in cardiomyocytes during cardiac regeneration. RESULTS: We found that YAP is acetylated at K265 by CBP (CREB-binding protein)/P300 (E1A-binding protein P300) and is deacetylated by nicotinamide phosphoribosyltransferase/nicotinamide adenine dinucleotide/sirtuins axis in cardiomyocytes. After myocardial infarction, YAP acetylation is increased, which promotes YAP cytoplasmic localization. Compared with controls, mice that were genetically engineered to express a K265R mutation that prevents YAP K256 acetylation showed improved cardiac regenerative ability and increased YAP nuclear localization. Mechanistically, YAP acetylation facilitates its interaction with TUBA4A, a component of the microtubule network that sequesters acetylated YAP in the cytoplasm. After myocardial infarction, the microtubule network increased in cardiomyocytes, resulting in the accumulation of YAP in the cytoplasm. CONCLUSIONS: After myocardial infarction, decreased sirtuin activity enriches YAP acetylation at K265. The growing TUBA4A network sequesters acetylated YAP within the cytoplasm, which is detrimental to cardiac regeneration.

8.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39121178

RESUMO

The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Twenty-four Duroc × Landrace × Yorkshire crossbred barrows with an initial body weight of 24.90 ±â€…0.46 kg were randomly assigned to 3 dietary treatments, including the low NE group (2,325 kcal/kg), the medium NE group (2,475 kcal/kg), and the high NE group (2,625 kcal/kg). The total feces and urine produced from each pig during each period were collected, to calculate the NE intake, NE retained as protein (NEp), and NE retained as lipid (NEl). A total of 240 sets of data on the energy partition patterns of each pig were collected, 75% of the data in the dataset was randomly selected as the training dataset, and the remaining 25% was set as the testing dataset. Prediction models for the NE requirement of growing pigs were developed using algorithms including multiple linear regression (MR), artificial neural networks (ANN), k-nearest neighbor (KNN), and random forest (RF), and the prediction performance of these models was compared on the testing dataset. The results showed pigs in the low NE group showed a lower average daily gain, lower average daily feed intake, lower NE intake, but greater feed conversion ratio compared to pigs in the high NE group in most growth stages. In addition, pigs in the 3 treatment groups did not show a significant difference in NEp in all growth stages, while pigs in the medium and high NE groups showed greater NEl compared to pig in the low NE group in growth stages from 25 to 55 kg (P < 0.05). Among the developed prediction models for NE intake, NEp, and NEl, the ANN models demonstrated the most optimal prediction performance with the smallest root mean square error (RMSE) and the largest R2, while the RF models had the worst prediction performance with the largest RMSE and the smallest R2. In conclusion, diets with varied NE concentrations within a certain range did not affect the NEp of growing pigs, and the models developed with the ANN algorithm could accurately achieve the NE requirement prediction in growing pigs.


Net energy (NE) can unify the energy value of the feed with the energy requirements of the pig more accurately and is the optimal system for accurately predicting the growth performance of pigs. The evaluation of the NE partition pattern is difficult and costly, thus, establishing a predicted model is a more efficient way. This study was conducted to evaluate the energy partition patterns of growing pigs fed diets with different NE levels based on machine learning methods. Diets with varied NE concentrations within a certain range did not affect the growth performance and NE requirement for lipid deposition in growing pigs. Among the 4 models developed to predict NE requirements, the artificial neural networks model had the highest accuracy, while the multiple linear regression model had the highest interpretability.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Metabolismo Energético , Aprendizado de Máquina , Animais , Dieta/veterinária , Ração Animal/análise , Suínos/crescimento & desenvolvimento , Suínos/fisiologia , Masculino , Ingestão de Energia
9.
Front Public Health ; 12: 1390511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114526

RESUMO

Objective: To determine the relationship between domain-specific physical activity (PA) (e.g., occupational PA [OPA], transport-related PA [TPA], and recreational PA [RPA]) and cognitive function in older adults. Methods: The data was obtained from the 2011-2014 cycle of the NHANES. We utilized weighted multivariate linear regression models among the included 2,924 people aged 60 years or older for our purposes. Results: RPA and total PA according to WHO guidelines were associated with verbal fluency (RPA ß: 1.400, 95% CI: 0.776, 2.024, p = 0.002; total PA ß: 1.115, 95% CI: 0.571, 1.659, p = 0.001), processing speed and executive function (RPA ß: 2.912, 95% CI. 1.291, 4.534, p = 0.005; total PA ß: 2.974, 95% CI: 1.683, 4.265, p < 0.001) were positively correlated, and total PA was correlated with delayed memory performance (ß: 0.254, 95% CI: 0.058, 0.449, p = 0.019). No significant association was observed between OPA, TPA, and various aspects of cognitive function among individuals over 60 years. Conclusion: There was no noteworthy correlation discovered between OPA and TPA in relation to cognitive function. However, RPA and total PA exhibited significant associations with verbal fluency, processing speed, and executive function. Additionally, maintaining PA levels ranging from 600 to 1,200 MET-min/week would yield the most favorable outcomes for cognitive function.


Assuntos
Cognição , Exercício Físico , Inquéritos Nutricionais , Humanos , Feminino , Masculino , Idoso , Cognição/fisiologia , Pessoa de Meia-Idade , Função Executiva/fisiologia , Idoso de 80 Anos ou mais , Estados Unidos
10.
Adv Sci (Weinh) ; : e2407931, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206752

RESUMO

In the context of the growing importance of heterocyclic compounds across various disciplines, numerous strategies for their construction have emerged. Exploiting the distinctive properties of cyclopropenes, this study introduces an innovative approach for the synthesis of benzo-fused five-membered oxa- and aza-heterocycles through a formal [4+1] cyclization and subsequent acid-catalyzed intramolecular O- to N- rearrangement. These transformations exhibit mild reaction conditions and a wide substrate scope. The applications in the late-stage modification of complex molecules and in the synthesis of a potential PD-L1 gene down-regulator, make this method highly appealing in related fields. Combined experimental mechanistic studies and DFT calculations demonstrate Rh(III)-mediated sequential C─H coupling/π-allylation/dynamically favorable O-attack route.

11.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948703

RESUMO

Background: Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods: We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results: Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions: This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.

12.
Huan Jing Ke Xue ; 45(7): 3828-3838, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022931

RESUMO

Based on a typical ozone (O3) pollution process in Jinan City from June 16 to 26, 2021, the variation characteristics of O3 and its precursor volatile organic compounds (VOCs) during different pollution periods (clean period (CP), pollution rise period (PRP), heavy pollution period (HPP), and pollution decline period (PDP)) in the urban area were analyzed. Both positive matrix factorization (PMF) and an observation-based model (OBM) were used to identify the main sources of VOCs, O3 production mechanisms, and sensitive species. The results showed that the average value of ρ(O3-8h) during the HPP period in the urban area was (246.67±11.24) µg·m-3, and ρ(O3-1h) had a peak value of 300 µg·m-3. The volume fractions of VOCs and NO2 concentration were affected by the decrease in planetary boundary layer and wind speed, which were 76.99%-145.36% and 127.78%-141.18% higher than those in the other three periods, respectively, and were the main reasons for the aggravation of O3 pollution. Alkanes, oxygenated volatile organic compounds (OVOCs), and halogenated hydrocarbons accounted for 43.81%, 20.98%, and 17.43% of VOCs in urban areas, respectively. All of them showed significant growth during the HPP period, with acetone, propane, and ethane being the top three species by volume in each stage and isopentane showing the highest growth during the HPP period. Alkene, alkanes, and aromatic hydrocarbons accounted for 40.19%, 28.06%, and 21.92% of the ozone generation potential (OFP). 1-butene, toluene, isopentane, and isoprene were the species with higher OFP. Isoprene had the highest OFP during the PRP phase, and 1-butene had the highest OFP during the HPP phase. The volume fraction of isopentane significantly increased OFP. The correlation coefficient between VOCs and CO preliminarily indicated that motor vehicle exhaust and oil and gas volatilization were the main sources of VOCs during the HPP period. Further use of PMF revealed that solvent use sources, combustion sources, motor vehicle exhaust+oil and gas volatilization sources, industrial emission sources, and plant sources were important sources of VOCs in urban areas. The contribution of motor vehicle exhaust+oil and gas volatilization sources in the HPP period to VOCs was 3.09-14.72 times higher than that in other periods. The contribution of solvent use sources to VOCs was approximately 2.50 times higher than that in the CP and PRP periods. The main sources of VOCs volume fraction increase were motor vehicle exhaust, oil and gas volatilization sources, and solvent use sources. Potential sources and concentration weight analysis found that VOCs were also affected by the transmission of VOCs to Binzhou and Dongying in the northeast direction. The OBM results indicated that the main pathway of O3 formation in urban areas was the reaction of peroxide hydroxyl radicals (HO2·ï¼‰ and methyl peroxide radicals (CH3O2·ï¼‰ with NO, and the net ozone generation rate during the HPP phase [P(O3)net] was 24×10-9 h-1. Based on the sensitivity experiment results, the alkene components of 1-butene, propylene, cis-2-butene, and ethylene were the dominant species for O3 production.

13.
PLoS One ; 19(7): e0306110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950048

RESUMO

The rational use of cultivated land can guarantee food security and thus is highly important for ensuring social stability, economic development and national security. The current study investigated the multifunctional temporal and spatial variation characteristics of cultivated land and explored the spatial and temporal characteristics of the multifunction and coupling coordination degrees of cultivated land throughout Hebei Province. Based on the administrative division data, statistical yearbook data and land use status data of the impacted areas, a multifunctional evaluation index system of cultivated land was established. The CRITIC weight method and entropy weight method were used to determine the weight of the index, the comprehensive index model was used to determine the production, social security, ecology and landscape functions of cultivated land of Hebei Province in different periods, the coupling coordination model was used to explore the multifunctional coupling coordination degree of cultivated land in each county, and spatial autocorrelation analysis was performed to determine the correlation of the multifunctional coupling coordination degrees. From 2000 to 2020, the production, social security and landscape function of cultivated land in Hebei Province trended upward; the ecological function trended slightly downward. The multifunctional coupling coordination degree of cultivated land in Hebei Province trended significantly upward and changed from limited coordination to intermediate coordination. Furthermore, it exhibited strong agglomeration and a significant positive spatial correlation, forming a 'V'-type change rule of first decreasing and then increasing. Hebei Province exhibited remarkable spatial and temporal characteristics of the multifunction and coupling coordination degrees of cultivated land. Regions could thus customize different cultivated land functions to maximize the benefits of cultivated land use. The findings of this study may provide a scientific basis and theoretical support for sustainably using and managing cultivated land resources in areas with similar human geographical environments.


Assuntos
Agricultura , Análise Espaço-Temporal , China , Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Humanos , Ecossistema
14.
JACC Basic Transl Sci ; 9(6): 792-807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39070274

RESUMO

Gene expression involves transcription, translation, and mRNA and protein degradation. Advanced RNA sequencing measures mRNA levels for cell state assessment, but mRNA level does not fully reflect protein level. Identifying heart cell proteomes and their stress response is crucial. Using a cardiomyocyte-specific mouse model, we tracked protein synthesis after myocardial infarction. Our results showed that myocardial infarction suppresses protein synthesis and unveils a decoupling of translation and transcription regulation in cardiomyocytes.

15.
Opt Express ; 32(11): 19467-19479, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859081

RESUMO

Computational micro-spectrometers comprised of detector arrays and encoding structure arrays, such as on-chip Fabry-Perot (FP) cavity filters, have great potential in many in-situ applications owing to their compact size and snapshot imaging ability. Given manufacturing deviation and environmental influence are inevitable, easy and effective calibration for spectrometer is necessary, especially for in-situ applications. Currently calibration strategies based on iterative algorithms or neural networks require accurate measurements of pixel-level (spectral) encoding functions through monochromator or large amounts of standard samples. These procedures are time-consuming and expensive, thereby impeding in-situ applications. Meta-learning algorithms with few-shot learning ability can address this challenge by incorporating the prior knowledge in the simulated dataset. In this work, we propose a meta-learning algorithm free of measuring encoding function or large amounts of standard samples to calibrate a micro-spectrometer with manufacturing deviation effectively. Our micro-spectrometer comprises 16 types of FP filters covering a wavelength range of 550-720 nm. The center wavelength of each filter type deviates from the design up to 6 nm. After calibration with 15 different color data, the average reconstruction error on the test dataset decreased from 7.2 × 10-3 to 1.2 × 10-3, and further decreased to 9.4 × 10-4 when the calibration data increased to 24. The performance is comparable to algorithms trained with measured encoding function both in reconstruction error and generalization ability. We estimated that the cost of in-situ calibration through reflectance measurements of color chart decreased to one percent of the cost through monochromator measurements. By exploiting prior deviation information in simulation data with meta-learning, the efficiency and cost of calibration are significantly improved, thereby facilitating the large-scale production and in-situ application of micro-spectrometers.

16.
Opt Express ; 32(8): 13140-13155, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859292

RESUMO

Focusing light down to subwavelength scales to enhance the light-matter interaction has been highly sought after, which has promoted significant researches and applications in nanophotonics. Plasmonic nanoantennae are a significant tool to achieve this goal since they can confine light into ultra-small volumes far below the diffraction limit. However, metallic materials have the property of central symmetry, resulting in weak second-order nonlinear effects. Here, we design plasmonic bowtie nanoantennae on thin-film lithium niobate (TFLN) for deep-subwavelength light confinement to boost the second-harmonic generation (SHG) in TFLN via the plasmonic hotspot enhancement. The SHG enhancement factor of about 20 times as compared to unpatterned TFLN is achieved in the experiment when resonantly excited by femtosecond laser. This work proposes a route for subwavelength nonlinear optics on the TFLN platform.

17.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893846

RESUMO

This paper reports the vapor pressure and enthalpy of vaporization for a promising phase change material (PCM) guanidinium methanesulfonate ([Gdm][OMs]), which is a typical guanidinium organomonosulfonate that displays a lamellar crystalline architecture. [Gdm][OMs] was purified by recrystallization. The elemental analysis and infrared spectrum of [Gdm][OMs] confirmed the purity and composition. Differential scanning calorimetry (DSC) also confirmed its high purity and showed a sharp and symmetrical endothermic melting peak with a melting point (Tm) of 207.6 °C and a specific latent heat of fusion of 183.0 J g-1. Thermogravimetric analysis (TGA) reveals its thermal stability over a wide temperature range, and yet three thermal events at higher temperatures of 351 °C, 447 °C, and 649 °C were associated with vaporization or decomposition. The vapor pressure was measured using the isothermogravimetric method from 220 °C to 300 °C. The Antoine equation was used to describe the temperature dependence of its vapor pressure, and the substance-dependent Antoine constants were obtained by non-linear regression. The enthalpy of vaporization (ΔvapH) was derived from the linear regression of the slopes associated with the linear temperature dependence of the rate of weight loss per unit area of vaporization. Hence, the temperature dependence of vapor pressures ln Pvap (Pa) = 10.99 - 344.58/(T (K) - 493.64) over the temperature range from 493.15 K to 573.15 K and the enthalpy of vaporization ΔvapH = 157.10 ± 20.10 kJ mol-1 at the arithmetic mean temperature of 240 °C were obtained from isothermogravimetric measurements using the Antoine equation and the Clausius-Clapeyron equation, respectively. The flammability test indicates that [Gdm][OMs] is non-flammable. Hence, [Gdm][OMs] enjoys very low volatility, high enthalpy of vaporization, and non-flammability in addition to its known advantages. This work thus offers data support, methodologies, and insights for the application of [Gdm][OMs] and other organic salts as PCMs in thermal energy storage and beyond.

18.
Food Chem X ; 22: 101465, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38798797

RESUMO

Probiotic Bacillus strains can solve the problems of single flavor and long fermentation time of fermented products caused by the lack of certain functional genes and insufficient metabolism ability of fermenter strains (Lactobacillus and Bifidobacterium) at the present stage. There is a lack of systematic evaluation and review of probiotic Bacillus as food fermentation agents. In this paper, it is observed that probiotic Bacillus strains are involved to varying degrees in liquid-state, semi-solid state, and solid-state fermentation and are widely present in solid-state fermented foods. Probiotic Bacillus strains not only produce abundant proteases and lipases, but also effective antifungal lipopeptides and extracellular polymers, thus enhancing the flavor, nutritional value and safety of fermented foods. Bacillus with probiotic qualities is an underutilized group of probiotic food fermentation agents, which give a potential for the development of fermentation technology in the food business and the integration of ancient traditional fermentation techniques.

19.
Anal Chim Acta ; 1308: 342616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740451

RESUMO

BACKGROUND: Bacterial spores are the main potential hazard in medium- and high-temperature sterilized meat products, and their germination and subsequent reproduction and metabolism can lead to food spoilage. Moreover, the spores of some species pose a health and safety threat to consumers. The rapid detection, prevention, and control of bacterial spores has always been a scientific problem and a major challenge for the medium and high-temperature meat industry. Early and sensitive identification of spores in meat products is a decisive factor in contributing to consumer health and safety. RESULTS: In this study, we developed a novel and stable Ag@AuNP array substrate by using a two-step synthesis approach and a liquid-interface self-assembly method that can directly detect bacterial spores in actual meat product samples without the need for additional in vitro bacterial culture. The results indicate that the Ag@AuNP array substrate exhibits high reproducibility and Raman enhancement effects (1.35 × 105). The differentiation in the Surface enhanced Raman scattering (SERS) spectra of five bacterial spores primarily arises from proteins in the spore coat and inner membrane, peptidoglycan of cortex, and Ca2⁺-DPA within the spore core. The correct recognition rate of linear discriminant analysis for spores in the meat product matrix can reach 100 %. The average recovery accuracy of the SERS quantitative model was at around 101.77 %, and the limit of detection can reach below 10 CFU/mL. SIGNIFICANCE: It provides a promising technological strategy for the characteristic substance analysis and timely monitoring of spores in meat products.


Assuntos
Produtos da Carne , Prata , Análise Espectral Raman , Esporos Bacterianos , Análise Espectral Raman/métodos , Prata/química , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/química , Produtos da Carne/microbiologia , Produtos da Carne/análise , Nanopartículas Metálicas/química , Contaminação de Alimentos/análise , Propriedades de Superfície , Microbiologia de Alimentos/métodos , Culinária
20.
J Transl Med ; 22(1): 475, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764033

RESUMO

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Assuntos
Autofagia , Polaridade Celular , Exossomos , Macrófagos , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Apneia Obstrutiva do Sono , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Bases , Exossomos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Fígado/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuína 3/metabolismo , Sirtuína 3/genética , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA