Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Surg ; 11: 1372310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351289

RESUMO

Background: Pauwels type III femoral neck fractures, as a serious type of femoral neck fractures, have brought about a heavy economic burden on families and society for the high disability rate. Through bibliometric research and visualized analysis, this study aimed at elucidating the global research status of Pauwels type III femoral neck fractures to date, and predicting the future research trends in this field. Methods: Publications and associated information on Pauwels type III femoral neck fractures to date were retrieved from Web of Science Core Collection, and by VoSviewer and R package "bibliometrix", bibliometric analysis and visual presentation was conducted. Results: By retrieval, a total of 98 studies were refinedly extracted, and the volume of publications in this field increased year-over-year. China ranked first in terms of total publication volume and H-Index, with its total citation records second only to the United States. The country with the highest average citation frequency was Switzerland. SHANGHAI JIAO TONG UNIVERSITY was the most productive research institution. Among the authors in this field, Li, Jiantao had published the most researches. INJURY INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED and JOURNAL OF ORTHOPAEDIC TRAUMA were the two magazines with the highest publication volume, total citation records, and H-index. According to keywords co-occurrence analysis, the research content in the past 24 years is mainly divided into four different dimensions. Finite element analysis, femoral neck system, medial buttress plate, cannulated screws, hip screw, open reduction, complications are hot topics for future research. Conclusions: According to the global trends analysis of publications production, Pauwels type III femoral neck fractures are receiving increasing attention and input from scholars. China has made the greatest scientific research contribution among countries, but its academic quality should be improved further. The modified therapeutic methods designed for addressing the complications of traditional internal fixation for Pauwels III femoral neck fractures will be the future research hotspot.

2.
Mol Pharm ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303222

RESUMO

Abnormalities in the RAS-RAF signaling pathway occur in many solid tumors, leading to aberrant tumor proliferation, invasion, and metastasis. Due to the elusive pharmacology of RAS, RAF inhibitors have become the main targeted therapeutic drugs. Naporafenib (LXH-254) is a high-affinity pan-RAF inhibitor with FDA Fast Track Qualification. We sought to develop an 18F-labeled molecular probe from LXH-254 for PET imaging of tumors overexpressing RAF to noninvasively screen patients for susceptibility to targeted RAF therapy. To reduce the lipid solubility, LXH-254 was designed with triethylene glycol di(p-toluenesulfonate) (TsO-PEG3-OTs) to obtain the precursor (LXH-254-OTs) and a nucleophilic substitution reaction with 18F to obtain the tracer ([18F]F-LXH-254). [18F]F-LXH-254 exhibited good molar activity (7.16 ± 0.81 GBq/µmol), radiochemical purity (>95%), and stability. Micro-PET imaging revealed distinct radioactivity accumulation of [18F]F-LXH-254 in tumors in the imaging groups, whereas in the blocked group, the tumor radioactivity level was consistent with the background tissue, illustrating the affinity and specificity of [18F]F-LXH-254 in targeting RAF. Overall, [18F]F-LXH-254 is a promising radiotracer for screening and diagnosing patients with RAF-related disease and monitoring their treatment. This is the first attempt at using an 18F-labeled RAF-specific radiotracer.

3.
J Am Chem Soc ; 146(32): 22600-22611, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101597

RESUMO

Atomically precise synthesis of three-dimensional boron-nitrogen (BN)-based helical structures constitutes an undeveloped field with challenges in synthetic chemistry. Herein, we synthesized and comprehensively characterized a new class of helical molecular carbons, named benzo-extended [n]heli(aminoborane)s ([n]HABs), in which the helical structures consisted of n = 8 and n = 10 ortho-condensed conjugated rings with alternating BN atoms at the inner rims. X-ray crystallographic analysis, photophysical studies, and density functional theory calculations revealed the unique characteristics of this novel [n]HAB system. Owing to the high enantiomerization energy barriers, the optical resolution of [8]HAB and [10]HAB was achieved with chiral high-performance liquid chromatography. The isolated enantiomers of [10]HAB exhibited record absorption and luminescence dissymmetry factors (|gabs|=0.061; |glum|=0.048), and boosted CPL brightness up to 292 M-1 cm-1, surpassing most helicene derivatives, demonstrating that the introduction of BN atoms into the inner positions of helicenes can increase both the |gabs| and |glum| values.

4.
J Hazard Mater ; 479: 135675, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216241

RESUMO

The profound influences of altitude on aquatic microbiome were well documented. However, differences in the responses of different life domains (bacteria, microeukaryotes, viruses) and antibiotics resistance genes (ARGs) in glacier river ecosystems to altitude remain unknown. Here, we employed shotgun metagenomic and amplicon sequencing to characterize the altitudinal variations of microbiome and ARGs in the Rongbu River, Mount Everest. Our results indicated the relative influences of stochastic processes on microbiome and ARGs assembly in water and sediment were in the following order: microeukaryotes < ARGs < viruses < bacteria. Moreover, distinct assembly patterns of the microbiome and ARGs were found in response to differences in altitude, the latter of which shift from deterministic to stochastic processes with increasing differences in altitude. Partial least squares path modeling revealed that mobile genetic elements (MGEs) and viral ß-diversity were the major factors influencing the ARG abundances. Taken together, our work revealed that altitude-caused environmental changes led to significant changes in the composition and assembly processes of the microbiome and ARGs, while ARGs had a unique response pattern to altitude. Our findings provide novel insights into the impacts of altitude on the biogeographic distribution of microbiome and ARGs, and the associated driving forces in glacier river ecosystems.


Assuntos
Altitude , Resistência Microbiana a Medicamentos , Microbiota , Rios , Rios/microbiologia , Microbiota/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Ecossistema , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Sedimentos Geológicos/microbiologia , Vírus/efeitos dos fármacos , Vírus/genética , Antibacterianos/farmacologia , Camada de Gelo/microbiologia , China
5.
Angew Chem Int Ed Engl ; : e202406497, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031496

RESUMO

Heteroatom-embedded helical nanographenes (NGs) constitute an important and appealing class of intrinsically chiral materials. In this work, a series of B,N-embedded helical NGs bearing azepines was synthesized via stepwise regioselective cyclodehydrogenation. First, the phenyl- or nitrogen-bridged dimers were efficiently clipped into highly congested model compounds 1 and 2. Later, the controllable Scholl reactions of the tetraphenyl-tethered precursor generated 1, 7 or 8 new C‒C bonds, thereby establishing a robust method for the preparation of nonalternant BN-HNGs with up to 31 fused rings. The helical bilayer nature was unambiguously verified by X-ray diffraction analysis. The helical chirality was transferred to the stereogenic boron centers upon fluoride coordination, with a concave-concave structure to comply with the bilayer skeleton. Notably, the largest nonalternant BN-HNG (6) spontaneously resolved into a homochiral 41 helix structure as a molecular spiral staircase during crystallization via conglomerate formation at the single-crystal scale. The large twisted C2-symmetric pi-surface and the dynamic chiral skeleton induced by curved azepines might have synergistic effects on self-recognition of enantiomers of 6 to achieve the intriguing spontaneous resolution behavior. The chiroptical properties of the enantiomer of 6 were further investigated, revealing that 6 had a strong chiroptical response in the visible range (400-700 nm).

6.
Angew Chem Int Ed Engl ; : e202410759, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032012

RESUMO

Introduction of nonhexagons and/or heteroatoms allows for finely tuning the physicochemical properties of nanographenes. Heteroatoms doping have dominated the modulation of nanographenes with tunable bandgap, rich electrochemical activities and so on. The pair of nonhexagons, for instance, pentagon-heptagon pairs, have furnished nanographenes with aromatic and/or antiaromatic characteristics, open-shell properties and so on. In order to meet the growing demand for versatile nanographenes in materials science, research on novel nanographenes with heteroatom doped nonhexagonal pairs has been aroused in recent years. In this review, we focus on nanographenes with nitrogen-doped nonhexagonal paris including the synthesis, structure analysis, photophysical properties, and potential applications in organic devices.

7.
J Transl Med ; 22(1): 702, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075485

RESUMO

BACKGROUND: The intricacies of nucleotide metabolism within tumor cells specific to colorectal cancer (CRC) remain insufficiently characterized. A nuanced examination of particular tumor clusters and their dynamic interplay with the tumor microenvironment (TME) may yield profound insights into these therapeutically auspicious communicative networks. METHODS: By integrating ten types of single-cell enrichment scoring methods, we carried out enrichment analysis on CRC cell types, which was validated through four additional single-cell cohorts. Groups of tumor cells were determined using the average values of the scores. Using cellphonedb, monocle, inferCNV, SCENIC, and Cytotrace, functional analyses were performed. Utilizing the RCTD approach, single-cell groupings were mapped onto spatial transcriptomics, analyzing cell dependency and pathway activity to distinguish between tumor cell subtypes. Differential expression analysis identified core genes in nucleotide metabolism, with single-cell and spatial transcriptomics analyses elucidating the function of these genes in tumor cells and the immune microenvironment. Prognostic models were developed from bulk transcriptome cohorts to forecast responses to immune therapy. Laboratory experiments were conducted to verify the biological function of the core gene. RESULTS: Nucleotide metabolism is significantly elevated in tumor cells, dividing them into two groups: NUhighepi and NUlowepi. The phenotype NUhighepi was discerned to exhibit pronounced malignant attributes. Utilizing the analytical tool stlearn for cell-to-cell communication assessment, it was ascertained that NUhighepi engages in intimate interactions with fibroblasts. Corroborating this observation, spatial transcriptome cell interaction assessment through MISTy unveiled a particular reliance of NUhighepi on fibroblasts. Subsequently, we pinpointed NME1, a key gene in nucleotide metabolism, affirming its role in thwarting metastasis via in vitro examination. Utilizing multiple machine learning algorithms, a stable prognostic model (NRS) has been developed, capable of predicting survival and responses to immune therapy. In addition, targeted drugs have been identified for both high and low scoring groups. Laboratory experiments have revealed that NME1 can inhibit the proliferation and invasion of CRC tumor cells. CONCLUSION: Our study elucidates the potential pro-tumor mechanism of NUhighepi and the role of NME1 in inhibiting metastasis, further deepening the understanding of the role of nucleotide metabolism in colorectal cancer, and providing valuable targets for disrupting its properties.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Nucleotídeos , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microambiente Tumoral/genética , Humanos , Transcriptoma/genética , Nucleotídeos/metabolismo , Linhagem Celular Tumoral , Prognóstico , Perfilação da Expressão Gênica
8.
Aging (Albany NY) ; 16(12): 10579-10614, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38913914

RESUMO

Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Aprendizado de Máquina , Mitofagia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Mitofagia/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Prognóstico , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Mutação , Multiômica
9.
Environ Technol ; : 1-13, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773903

RESUMO

The increasing concentrations of heavy metals in livestock wastewater pose a serious threat to the environmental safety and human health, limiting its resource utilisation. In the present study, microalgae and nanoscale zero-valent iron were selected to construct a coupled system for copper-containing wastewater treatment. The addition of 50 mg·L-1 nanoscale zero-valent iron (50 nm) was the optimal value for the experiment, which could significantly increase the biomass of microalgae. In addition, nanoscale zero-valent iron stimulated microalgal secretion of extracellular polymeric substances, increasing the contents of binding sites, organic ligands, and functional groups on the microalgal surfaces and ultimately promoting the settling of microalgae and binding of heavy metals. The coupled system could quickly adapt to copper-containing wastewater of 10 mg·L-1, and the copper removal rate reached 94.99%. Adsorption and uptake by organisms, together with the contribution of zero-valent iron nanoparticles, are the major copper removal pathways. Overall, this work offers a novel technical solution for enhanced treatment of copper-containing livestock wastewater, which will help improve the efficiency and quality of wastewater treatment.

10.
J Am Chem Soc ; 146(23): 16161-16172, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38720418

RESUMO

Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.

11.
Bioresour Technol ; 400: 130697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614145

RESUMO

Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.


Assuntos
Chlorella , Lipídeos , Fosfatos , Águas Residuárias , Águas Residuárias/microbiologia , Animais , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Suínos , Fosfatos/metabolismo , Lipídeos/biossíntese , Fósforo/metabolismo , Metabolismo dos Lipídeos , Solubilidade , Bacillus/metabolismo
12.
Curr Med Chem ; 31(25): 4034-4055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685772

RESUMO

BACKGROUND: Recent studies have unveiled disulfidptosis as a phenomenon intimately associated with cellular damage, heralding new avenues for exploring tumor cell dynamics. We aimed to explore the impact of disulfide cell death on the tumor immune microenvironment and immunotherapy in lung adenocarcinoma (LUAD). METHODS: We initially utilized pan-cancer transcriptomics to explore the expression, prognosis, and mutation status of genes related to disulfidptosis. Using the LUAD multi- -omics cohorts in the TCGA database, we explore the molecular characteristics of subtypes related to disulfidptosis. Employing various machine learning algorithms, we construct a robust prognostic model to predict immune therapy responses and explore the model's impact on the tumor microenvironment through single-cell transcriptome data. Finally, the biological functions of genes related to the prognostic model are verified through laboratory experiments. RESULTS: Genes related to disulfidptosis exhibit high expression and significant prognostic value in various cancers, including LUAD. Two disulfidptosis subtypes with distinct prognoses and molecular characteristics have been identified, leading to the development of a robust DSRS prognostic model, where a lower risk score correlates with a higher response rate to immunotherapy and a better patient prognosis. NAPSA, a critical gene in the risk model, was found to inhibit the proliferation and migration of LUAD cells. CONCLUSION: Our research introduces an innovative prognostic risk model predicated upon disulfidptosis genes for patients afflicted with Lung Adenocarcinoma (LUAD). This model proficiently forecasts the survival rates and therapeutic outcomes for LUAD patients, thereby delineating the high-risk population with distinctive immune cell infiltration and a state of immunosuppression. Furthermore, NAPSA can inhibit the proliferation and invasion capabilities of LUAD cells, thereby identifying new molecules for clinical targeted therapy.


Assuntos
Adenocarcinoma de Pulmão , Imunoterapia , Neoplasias Pulmonares , Aprendizado de Máquina , Humanos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/imunologia , Prognóstico , Apoptose/efeitos dos fármacos , Multiômica
13.
Angew Chem Int Ed Engl ; 63(20): e202402621, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38443314

RESUMO

The incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach. A wide variation in the molecular geometries and photophysical properties of these helical nanographenes was observed, with changes in the helical length of these structures and the introduction of the pentagon-heptagon pairs. The embedded pentagon-heptagon pairs reduced the oxidation potential of the synthesized helical nanographenes. The high isomerization energy barriers enabled the chiral resolution of the helicene enantiomers. Chiroptical investigations revealed remarkably enhanced circularly polarized luminescence and luminescence dissymmetry factors with an increasing number of the pentagon-heptagon pairs.

14.
Front Immunol ; 15: 1295759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529282

RESUMO

Idiopathic granulomatous mastitis (IGM) is a noncancerous, chronic inflammatory disorder of breast with unknown causes, posing significant challenges to the quality of life due to its high refractoriness and local aggressiveness. The typical symptoms of this disease involve skin redness, a firm and tender breast mass and mastalgia; others may include swelling, fistula, abscess (often without fever), nipple retraction, and peau d'orange appearance. IGM often mimics breast abscesses or malignancies, particularly inflammatory breast cancer, and is characterized by absent standardized treatment options, inconsistent patient response and unknown mechanism. Definite diagnosis of this disease relies on core needle biopsy and histopathological examination. The prevailing etiological theory suggests that IGM is an autoimmune disease, as some patients respond well to steroid treatment. Additionally, the presence of concurrent erythema nodosum or other autoimmune conditions supports the autoimmune nature of the disease. Based on current knowledge, this review aims to elucidate the autoimmune-favored features of IGM and explore its potential etiologies. Furthermore, we discuss the immune-mediated pathogenesis of IGM using existing research and propose immunotherapeutic strategies for managing this condition.


Assuntos
Eritema Nodoso , Mastite Granulomatosa , Feminino , Humanos , Mastite Granulomatosa/diagnóstico , Mastite Granulomatosa/etiologia , Mastite Granulomatosa/terapia , Qualidade de Vida , Febre , Imunoglobulina M/uso terapêutico
15.
Aging (Albany NY) ; 16(5): 4327-4347, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451188

RESUMO

The 4-Hydroxyphenylpyruvate Dioxygenase-Like (HPDL) protein plays a crucial role in safeguarding cells from oxidative stress by orchestrating metabolic reprogramming. New research suggests that HPDL is considerably increased in pancreatic ductal adenocarcinoma, although its impact on cancer immunotherapy is still unclear. Pancancer transcriptional data were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression datasets. The cBioPortal webtool was utilized to examine genomic changes in different cancer types. The prognostic significance of HPDL in pancancer was evaluated using univariate Cox regression analysis. Extensive utilization of the CTRP and PRISM databases was performed to forecast potential medications that specifically target HPDL in LUAD. In summary, studies were conducted to evaluate the impact of HPDL on the proliferation and movement of LUAD cells using loss-of-function experiments. HPDL is expressed excessively in a wide variety of cancer types, indicating its prognostic and predictive value. Moreover, we emphasized the strong correlation between HPDL and indicators of immune stimulation, infiltration of immune cells, and expression of immunoregulators. The remarkable finding of the HPDL was its capacity to precisely anticipate responses to cancer therapies using anti-PDL1 and anti-PD1 antibodies among individuals. Moreover, HPDL can function as a predictive marker for specific inhibitors in instances of cancer. Suppression of HPDL resulted in reduced growth and movement of LUAD cells. To summarize, our results suggest that HPDL acts as a prospective predictor of outcomes and a positive indication of response to immunotherapy in patients undergoing treatment with immune checkpoint inhibitors (ICIs).


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Neoplasias Pancreáticas , Humanos , 4-Hidroxifenilpiruvato Dioxigenase/genética , Prognóstico , Imunoterapia , Microambiente Tumoral
16.
Sci Total Environ ; 919: 170676, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350567

RESUMO

As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp. in oxidation pond wastewater were investigated. The results showed that though a hermetic effect at the first 2 days was observed with the DDBAC at low concentration (<6 mg/L), the algal growth and photosynthesis were significantly inhibited by the DDBAC at all the tested concentrations (3 to 48 mg/L). Fortunately, a new microbial consortium (MC) capable of degrading DDBAC was screened through a gradient domestication method. The MC mainly composed of Wickerhamomyces sp., Purpureocillium sp., and Achromobacter sp., and its maximum removal efficiency and removal rate of DDBAC (48 mg/L) respectively reached 98.1 % and 46.32 mg/L/d. Interestingly, a microbial-microalgal system (MMS) was constructed using the MC and Chlorella sp., and a synergetic effect between the two kinds of microorganisms was proposed: microalga provided oxygen and extracellular polysaccharides as co-metabolic substrates to help the MC to degrade DDBAC, while the MC helped to eliminate the DDBAC-induced inhibition on the alga. Further, by observing the seven kinds of degradation products (mainly including CH5O3P, C6H5CH2-, and C8H11N), two possible chemical pathways of the DDBAC degradation were proposed. In addition, the metagenomic sequencing results showed that the main functional genes of the MMS included antibiotic-resistant genes, ABC transporter genes, quorum sensing genes, two-component regulatory system genes, etc. This study provided some theoretical and application findings for the cost-effective pollution prevention of BACs in wastewater.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Cloreto de Amônio/metabolismo , Consórcios Microbianos , Chlorella/metabolismo , Técnicas de Cocultura , Biomassa
17.
ACS Omega ; 9(7): 8229-8238, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405502

RESUMO

The utilization of interfacial polymerization in the preparation of microcapsules with a slow-controlled release has been shown to effectively improve pesticide efficacy and reduce environmental pollution. In this study, polyurea microcapsules loaded with lambda-cyhalothrin were prepared by an interfacial polymerization method using modified isocyanate (MDI) as the wall material and GT-34 as the initiator. The microcapsules were fully characterized by optical microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, etc., and release behaviors were investigated. The results indicated that the microcapsules had a smooth surface and uniform distribution, the average particle size of the microcapsules was 1.97 µm, and the encapsulation efficiency of lambda-cyhalothrin microcapsules could reach 91.48%. Compared with other commercial formulations, the microcapsules exhibited an excellent sustained release property (>7 days) in a 50% acetonitrile aqueous solution (v/v). Subsequently, in vitro release studies showed that the lambda-cyhalothrin microcapsules could consistently control the release of the core materials at different pH, temperature, and MDI addition amount conditions. The release of lambda-cyhalothrin microcapsules was in accordance with the first-order model release, which was mainly by the Fickian diffusion mechanism. Furthermore, the biological activity on Myzus persicae showed that the microcapsules' persistence period was above 21 days, which was longer than that for the emulsifiable concentrate formulation.

18.
Aging (Albany NY) ; 16(1): 593-616, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38206300

RESUMO

TM4SF family members (TM4SFs) have been shown to be aberrantly expressed in multiple types of cancer. However, a comprehensive investigation of the TM4SFs has yet to be performed in LIHC. The study comprehensively investigated the expression and prognostic value of TM4SFs. Then, a TM4SFs-based risk model and nomogram were constructed for prognostic prediction. Finally, functional loss of TM4SFs was performed to verify the potential role of TM4SFs in LIHC. We found that TM4SFs were significantly up-regulated in LIHC. High expression and hypomethylation of TM4SFs were associated with poor prognosis of LIHC patients. Then, a TM4SFs-based risk model was constructed that could effectively classify LIHC patients into high and low-risk groups. In addition, we constructed a prognostic nomogram that could predict the long-term survival of LIHC patients. Based on immune infiltration analysis, high-risk patients had a relatively higher immune status than low-risk patients. Moreover, the prediction module could predict patient responses to immunotherapy and chemotherapy. Finally, loss-of-function studies showed that TM4SF4 knockdown could substantially suppress the growth, migratory, and invasive abilities of LIHC cells. Targeting TM4SFs will contribute to effective immunotherapy strategies and improve the prognosis of liver cancer patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Multiômica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Imunoterapia , Glicoproteínas de Membrana
20.
Int J Biol Macromol ; 254(Pt 3): 127971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944720

RESUMO

Developing efficient and safe antibacterial agents to inhibit pathogens including Physalospora piricola and Staphylococcus aureus is of great importance. Herein, a novel compound composed of Rosa roxburghii procyanidin, chitosan and selenium nanoparticle (RC-SeNP) was bio-synthesized, with the average diameter and zeta potential being 84.56 nm and -25.60 mV, respectively. The inhibition diameter of the RC-SeNP against P. piricola and S. aureus reached 18.67 mm and 13.13 mm, and the maximum scavenging activity against DPPH and ABTS reached 96.02% and 98.92%, respectively. Moreover, the RC-SeNP completely inhibited the propagation P. piricola and S. aureus on actual apples, suggesting excellent in vivo antimicrobial capacity. The transcriptome analysis and electron microscope observation indicated that the antibacterial activity would be attributed to adhering to and crack the cell walls as well as damage the cytomembrane and nucleus. Moreover, the RC-SeNP effectively maintained the vitamin C, total acid, and water contents of red bayberry, demonstrating potential application for fruit preservation. At last, the RC-SeNP showed no cell toxicity and trace selenium residual dose (0.03 mg/kg on apple, 0.12 mg/kg on red bayberry). This study would enlighten future development on novel nano-bioantibacterial agents for sustainable agriculture.


Assuntos
Quitosana , Nanopartículas , Rosa , Selênio , Antioxidantes/farmacologia , Antioxidantes/química , Selênio/química , Quitosana/química , Staphylococcus aureus , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA