Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 118(1-2): 48-56, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215613

RESUMO

Panamá's extreme hydroclimate seasonality is driven by Intertropical Convergence Zone rainfall and resulting runoff. River discharge (Q) carries terrestrially-derived barium to coastal waters that can be recorded in coral. We present a Ba/Ca record (1996-1917) generated from a Porites coral colony in the Gulf of Chiriquí near Coiba Island (Panamá) to understand regional hydroclimate. Here coral Ba/Ca is correlated to instrumental Q (R=0.67, p<0.001), producing a seasonally-resolved Reduced Major Axis regression of Ba/Ca (µmol/mol)=Q (m3/s)×0.006±0.001 (µmol/mol)(m3/s)-1+4.579±0.151. Our results support work in the neighboring Gulf of Panamá that determined seawater Ba/Ca, controlled by Q, is correlated to coral Ba/Ca (LaVigne et al., 2016). Additionally, the Coiba coral Ba/Ca records at least 5 El Niño events and identified 22 of the 37 wet seasons with below average precipitation. These data corroborate the Q proxy and provide insight into the use of coral Ba/Ca as an El Niño and drought indicator.


Assuntos
Antozoários , Bário/análise , Cálcio/análise , Monitoramento Ambiental/métodos , Animais , Secas , El Niño Oscilação Sul , Ilhas , Panamá , Rios , Estações do Ano , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA