Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(53): 79977-79994, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35290582

RESUMO

Caffeine is the most widespread active pharmaceutical compound in the world, generally studied as a tracer of human pollution, since caffeine levels in surface water correlate with the anthropogenic load of domestic wastewater. This work investigated the use of different steel wastes named as SW-I, SW-II, SW-II, SW-IV, SW-V, and SW-VI in the adsorption of caffeine. These materials were pretreated and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and point of zero charge. The samples are mainly composed of iron (hematite and magnetite). The caffeine adsorption test indicated that SW-VI (steel slag dust) is the most efficient and promising (removal around 51.68%) in relation to the other residues, which it was selected for further studies. Equilibrium time was reached within 96 h of contact between the adsorbent and the adsorbate, with removal of 84.00%, 81.09%, and 73.19% for the initial concentrations of 10 mg L-1, 20 mg L-1, and 30 mg L-1 of caffeine. The pseudo-first-order, pseudo-second-order, and Elovich models presented a good fit to the experimental data. However, the pseudo-first order model described better the experimental behavior. Adsorption isotherms were performed at three temperatures (298, 308, and 318 K). The maximum adsorption capacity was 17.46 ± 2.27 mg g-1, and experimental data were better fitted by the Sips isotherm. Values of ΔG° and parameters equilibrium of the models of Langmuir, Sips, and Temkin were calculated from the standard enthalpies and standard entropies estimated. The values of ΔG° were negative for the temperatures studied indicating that the adsorption process is viable and spontaneous. Negative values for ΔH° were also found, indicating that the process of caffeine adsorption by SW-VI is an exothermic process (0 to -40 kJ mol-1). Thus, the adsorption of caffeine by SW-VI is a physical process. The SW-VI material showed economic viability and promising for the adsorption of caffeine in aqueous media.


Assuntos
Cafeína , Poluentes Químicos da Água , Humanos , Adsorção , Águas Residuárias , Aço , Poluentes Químicos da Água/análise , Óxido Ferroso-Férrico , Cinética , Concentração de Íons de Hidrogênio , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Ferro , Água , Poeira , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA