Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124011

RESUMO

Load recognition remains not comprehensively explored in Home Energy Management Systems (HEMSs). There are gaps in current approaches to load recognition, such as enhancing appliance identification and increasing the overall performance of the load-recognition system through more robust models. To address this issue, we propose a novel approach based on the Analysis of Variance (ANOVA) F-test combined with SelectKBest and gradient-boosting machines (GBMs) for load recognition. The proposed approach improves the feature selection and consequently aids inter-class separability. Further, we optimized GBM models, such as the histogram-based gradient-boosting machine (HistGBM), light gradient-boosting machine (LightGBM), and XGBoost (extreme gradient boosting), to create a more reliable load-recognition system. Our findings reveal that the ANOVA-GBM approach achieves greater efficiency in training time, even when compared to Principal Component Analysis (PCA) and a higher number of features. ANOVA-XGBoost is approximately 4.31 times faster than PCA-XGBoost, ANOVA-LightGBM is about 5.15 times faster than PCA-LightGBM, and ANOVA-HistGBM is 2.27 times faster than PCA-HistGBM. The general performance results expose the impact on the overall performance of the load-recognition system. Some of the key results show that the ANOVA-LightGBM pair reached 96.42% accuracy, 96.27% F1, and a Kappa index of 0.9404; the ANOVA-HistGBM combination achieved 96.64% accuracy, 96.48% F1, and a Kappa index of 0.9434; and the ANOVA-XGBoost pair attained 96.75% accuracy, 96.64% F1, and a Kappa index of 0.9452; such findings overcome rival methods from the literature. In addition, the accuracy gain of the proposed approach is prominent when compared straight to its competitors. The higher accuracy gains were 13.09, 13.31, and 13.42 percentage points (pp) for the pairs ANOVA-LightGBM, ANOVA-HistGBM, and ANOVA-XGBoost, respectively. These significant improvements highlight the effectiveness and refinement of the proposed approach.

2.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38610484

RESUMO

Efficient energy management in residential environments is a constant challenge, in which Home Energy Management Systems (HEMS) play an essential role in optimizing consumption. Load recognition allows the identification of active appliances, providing robustness to the HEMS. The precise identification of household appliances is an area not completely explored. Gaps like improving classification performance through techniques dedicated to separability between classes and models that achieve enhanced reliability remain open. This work improves several aspects of load recognition in HEMS applications. In this research, we adopt Neighborhood Component Analysis (NCA) to extract relevant characteristics from the data, seeking the separability between classes. We also employ the Regularized Extreme Learning Machine (RELM) to identify household appliances. This pioneering approach achieves performance improvements, presenting higher accuracy and weighted F1-Score values-97.24% and 97.14%, respectively-surpassing state-of-the-art methods and enhanced reliability according to the Kappa index, i.e., 0.9388, outperforming competing classifiers. Such evidence highlights the promising potential of Machine Learning (ML) techniques, specifically NCA and RELM, to contribute to load recognition and energy management in residential environments.

3.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577379

RESUMO

The collapse of overhead power line guyed towers is one of the leading causes of power grid failures, subjecting electricity companies to pay considerable, high-value fines. In this way, the current work proposes a novel and complete framework for the remote monitoring of mechanical stresses in guyed towers. The framework method comprises a mesh network for data forwarding and neural networks to improve the performance of Low-Power and Lossy Networks. The method also considers the use of multiple sensors in the sensor fusion technique. As a result, the risk of collapse of guyed cable towers reduces, due to the remote monitoring and preventive actions promoted by the framework. Furthermore, the proposed method uses multiple input variable fusions, such as accelerometers and tension sensors, to estimate the tower's displacement. These estimations help address the structural health of the tower against failures (i.e., loosening of the stay cables, displacement, and vibrations) that can cause catastrophic events, such as tower collapse or even cable rupture.


Assuntos
Redes Neurais de Computação
4.
Sensors (Basel) ; 20(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963514

RESUMO

The use of large-scale antenna arrays grants considerable benefits in energy and spectral efficiency to wireless systems due to spatial resolution and array gain techniques. By assuming a dominant line-of-sight environment in a massive multiple-input multiple-output scenario, we derive analytical expressions for the sum-capacity. Then, we show that convenient simplifications on the sum-capacity expressions are possible when working at low and high signal-to-noise ratio regimes. Furthermore, in the case of low and high signal-to-noise ratio regimes, it is demonstrated that the Gamma probability density function can approximate the probability density function of the instantaneous channel sum-capacity as the number of served devices and base station antennas grows, respectively. A second important demonstration presented in this work is that a Gamma probability density function can also be used to approximate the probability density function of the summation of the channel's singular values as the number of devices increases. Finally, it is important to highlight that the presented framework is useful for a massive number of Internet of Things devices as we show that the transmit power of each device can be made inversely proportional to the number of base station antennas.

5.
PLoS One ; 12(6): e0178976, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28598977

RESUMO

Cyanobacteria blooms are a risk to environmental health and public safety due to the potent toxins certain cyanobacteria can produce. These nuisance organisms can be removed from water bodies by biomass flocculation and sedimentation. Here, we studied the efficacy of combinations of a low dose coagulant (poly-aluminium chloride-PAC-or chitosan) with different ballast compounds (red soil, bauxite, gravel, aluminium modified zeolite and lanthanum modified bentonite) to remove cyanobacterial biomass from water collected in Funil Reservoir (Brazil). We tested the effect of different cyanobacterial biomass concentrations on removal efficiency. We also examined if zeta potential was altered by treatments. Addition of low doses of PAC and chitosan (1-8 mg Al L-1) to the cyanobacterial suspensions caused flock formation, but did not settle the cyanobacteria. When those low dose coagulants were combined with ballast, effective settling in a dose-dependent way up to 99.7% removal of the flocks could be achieved without any effect on the zeta potential and thus without potential membrane damage. Removal efficacy was influenced by the cyanobacterial biomass and at higher biomass more ballast was needed to achieve good removal. The combined coagulant-ballast technique provides a promising alternative to algaecides in lakes, ponds and reservoirs.


Assuntos
Coagulantes/farmacologia , Cianobactérias/efeitos dos fármacos , Cianobactérias/crescimento & desenvolvimento , Compostos de Alumínio/farmacologia , Toxinas Bacterianas/biossíntese , Biomassa , Brasil , Quitosana/farmacologia , Clorofila/biossíntese , Clorofila A , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Toxinas Marinhas/biossíntese , Microcistinas/biossíntese , Solo/química
6.
J Mol Model ; 23(6): 194, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28550376

RESUMO

An all-atom force field consistent with the general AMBER force field (GAFF) format for poly(ethylene glycol) dimethyl ether (diglyme or G2) was developed by fitting to experimental liquid densities and dielectric constants. Not surprisingly, the new force field gives excellent agreement with experimental liquid phase densities and dielectric constants over a wide temperature range. Other dynamic and thermodynamic properties of liquid G2 such as its self-diffusion coefficient, shear viscosity, and vaporization enthalpy were also calculated and compared to experimental data. For all of the properties studied, the performance of the proposed new force field is better than that of the standard GAFF force field. The force field parameters were transferred to model two other poly(ethylene glycol) ethers: monoglyme (G1) and tetraglyme (G4). The predictive ability of the modified force field for G1 and G4 was significantly better than that of the original GAFF force field. The proposed force field provides an alternative option for the simulation of mixtures containing glymes using GAFF-compatible force fields, particularly for electrochemical applications. The accuracy of a previously published force field based on the OPLS-AA format and the accuracies of two modified versions of that force field were also examined for G1, G2, and G4. It was found that the original OPLS-AA force field is superior to the modified versions of it, and that it has a similar accuracy to the proposed new GAFF-compatible force field. Graphical abstract Transferability of an AMBER-compatible force field parameterized for G2 to other glymes.

7.
Colloids Surf B Biointerfaces ; 134: 447-52, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231737

RESUMO

The Donnan potential can be observed in many biological systems due to the presence of polyelectrolytes as proteins and nucleic acids. The aim of this work was to present a useful tool to describe the fixed and charge-regulated volume charge density profile through the use of a smoothing function and to obtain the electrostatic potential profile as well as the Donnan potential of this system by solving Poisson-Boltzmann (PB) equation. When we use the smoothing function, the Donnan potential arises automatically from the solution of only one Poisson-Boltzmann equation and it is not necessary to impose this potential for treating charged system in the presence of a membrane. The electrostatic behavior across the Bacillus brevis wall considering the dependence on the ionization of the cell wall functional groups as a function of the solution pH was analyzed. An important issue was to show that potentiometric titration data could be used together with the Poisson-Boltzmann equation to predict the electrostatic behavior (e.g., zeta potential) of the bacterial cell surface.


Assuntos
Fenômenos Fisiológicos Bacterianos , Parede Celular/fisiologia , Eletricidade Estática
8.
J Phys Chem B ; 119(21): 6379-88, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25941952

RESUMO

In virtually all mammal cells, we can observe a much higher concentration of potassium ions inside the cell and vice versa for sodium ions. Classical theories ignore the specific ion effects and the difference in the thermodynamic reference states between intracellular and extracellular environments. Usually, this differential ion partitioning across a cell membrane is attributed exclusively to the active ion transport. Our aim is to investigate how much the dispersion forces contribute to active ion pumps in an erythrocyte (red blood cell) as well as the correction of chemical potential reference states between intracellular and extracellular environments. The ionic partition and the membrane potential in an erythrocyte are analyzed by the modified Poisson-Boltzmann equation, considering nonelectrostatic interactions between ions and macromolecules. Results show that the nonelectrostatic potential calculated by Lifshitz theory has only a small influence with respect to the high concentration of K(+) in the intracellular environment in comparison with Na(+).


Assuntos
Eritrócitos/fisiologia , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Cloretos/química , Citoplasma/química , Humanos , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Potássio/química , Sódio/química
9.
Rev. bras. cardiol. invasiva ; 23(1): 52-57, abr.-jun.2015. tab, graf, ilus
Artigo em Português | LILACS | ID: lil-782175

RESUMO

O ultrassom intracoronário (USIC) é o método adjunto mais utilizado na Cardiologia Intervencionista, e sua análise depende de normas para a aquisição, mensuração e interpretação das imagens. Ao associar a caracterização tecidual, o artefato causado pelo fio-guia pode hiperestimaro porcentual de núcleo necrótico em determinadas lesões, levando à classificação equivocada defibroateroma. Descrevemos os efeitos quantitativos e na análise tecidual resultantes da subtração do efeitodo artefato do fio-guia nas lesões ateroscleróticas em pacientes com síndrome coronária aguda. Métodos: Foram avaliados 21 pacientes com infarto do miocárdio pós-trombólise com USIC em escala de cinzas e com a tecnologia iMAP®, totalizando 76 lesões.Resultados: O USIC em escala de cinzas mostrou que as lesões tinham extensão média de 21,01 ± 18,03 mm e apresentavam elevada carga de placa (52,07 ± 7,56%). A análise pelo iMAP® demonstrou que, após a subtração do artefato do fio-guia, houve redução de todos os componentes teciduais (necrótico, calcífico, lipídico e fibrótico), porém de maneira mais acentuada do núcleo necrótico (diferença média de 3,59%). Além disso, após a subtração do artefato, 12,4% das lesões que inicialmente apresentavam núcleo necrótico ≥ 10% passaram a não ser mais classificadas como fibroateroma.Conclusões: A análise da placa de ateroma pela tecnologia iMAP® mostrou que o artefato do fio-guia superestimou o componente tecidual do núcleo necrótico. Essa interferência pode mudar errônea e categoricamente as características fenotípicas de lesões mais benignas e estáveis (fibróticas) para lesões potencialmente instáveis, como os fibroateromas, na relação de um em cada dez pacientes...


Intravascular ultrasound (IVUS) is the most widely used ancillary method in Interventional Cardiology, and its analysis depends on standards for acquisition, measurement and interpretation of the images. By associating tissue characterization, the artifact caused by the guidewire may overestimate the percentage of necrotic core in certain lesions, leading to misclassification of fibroatheroma. In this paper we described quantitative and tissue analysis effects resulting from subtracting the effect of guidewire artifact on atherosclerotic lesions in patients with acute coronary syndrome. Methods: Twenty-one patients with post-thrombolysis myocardial infarction were evaluated with grayscale IVUS and iMAPTM technology, totaling 76 lesions. Results: Grayscale IVUS showed that the lesions had a mean length of 21.01 ± 18.03 mm and revealed highplaque burden (52.07 ± 7.56%). The analysis by iMAPTM demonstrated that, after subtracting the guidewire artifact, there was a reduction of all tissue (necrotic, calcific, lipid and fibrotic) components, but more markedly in necrotic core (mean difference: 3.59%). In addition, after artifact subtraction 12.4% of the lesions that initially exhibited a necrotic core ≥ 10% ceased to be classified as fibroatheroma.Conclusions: An atheroma analysis by iMAPTM technology showed that the guidewire artifact over estimated the tissue component of the necrotic core. This interference may change, in an erroneous and categoric alway, the phenotypic characteristics of more stable and benign (fibrotic) lesions to potentially unstable lesions, for example, fibroatheromas, in a ratio of one out of ten patients...


Assuntos
Humanos , Masculino , Feminino , Estudos de Avaliação como Assunto/métodos , Pacientes , Tratamento Farmacológico , Síndrome Coronariana Aguda/terapia , Ultrassonografia/métodos , Angiografia Coronária/métodos , Interpretação Estatística de Dados , Fatores de Risco , Infarto do Miocárdio/terapia , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/terapia , Terapia Trombolítica/métodos
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 061903, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304112

RESUMO

The interaction between surface patches of proteins with different surface properties has a vital role to play driving conformational changes in proteins in different salt solutions. We demonstrate the existence of ion-specific attractive double-layer forces between neutral hydrophobic and hydrophilic surfaces in the presence of certain salt solutions. This is performed by solving a generalized Poisson-Boltzmann equation for two unequal surfaces. In the calculations, we utilize parametrized ion-surface potentials and dielectric-constant profiles deduced from recent non-primitive-model molecular dynamics simulations that partially account for molecular structure and hydration effects.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Sais/química , Propriedades de Superfície
11.
An Acad Bras Cienc ; 82(1): 109-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20209247

RESUMO

Ion-specific interactions between two colloidal particles are calculated using a modified Poisson-Boltzmann (PB) equation and Monte Carlo (MC)simulations. PB equations present good results of ionic concentration profiles around a macroion, especially for salt solutions containing monovalent ions. These equations include not only electrostatic interactions, but also dispersion potentials originated from polarizabilities of ions and proteins. This enables us to predict ion-specific properties of colloidal systems. We compared results obtained from the modified PB equation with those from MC simulations and integral equations. Phase diagrams and osmotic second virial coefficients are also presented for different salt solutions at different pH and ionic strengths, in agreement with the experimental results observed Hofmeister effects. In order to include the water structure and hydration effect, we have used an effective interaction obtained from molecular dynamics of each ion and a hydrophobic surface combined with PB equation. The method has been proved to be efficient and suitable for describing phenomena where the water structure close to the interface plays an essential role. Important thermodynamic properties related to protein aggregation, essential in biotechnology and pharmaceutical industries, can be obtained from the method shown here.


Assuntos
Coloides/química , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Proteínas/química , Termodinâmica , Modelos Químicos , Método de Monte Carlo
12.
An. acad. bras. ciênc ; 82(1): 109-126, Mar. 2010. graf
Artigo em Inglês | LILACS | ID: lil-539319

RESUMO

Ion-specific interactions between two colloidal particles are calculated using a modified Poisson-Boltzmann (PB)equationandMonteCarlo(MC)simulations. PBequationspresentgoodresultsofionicconcentration profiles around a macroion, especially for salt solutions containing monovalent ions. These equations include not only electrostatic interactions, but also dispersion potentials originated from polarizabilities of ions and proteins. This enables us to predict ion-specific properties of colloidal systems. We compared results obtained from the modified PB equation with those from MC simulations and integral equations. Phase diagrams and osmotic second virial coefficients are also presented for different salt solutions at different pH and ionic strengths, in agreement with the experimental results observed Hofmeister effects. In order to include the water structure and hydration effect, we have used an effective interaction obtained from molecular dynamics of each ion and a hydrophobic surface combined with PB equation. The method has been proved to be efficient and suitable for describing phenomena where the water structure close to the interface plays an essential role. Important thermodynamic properties related to protein aggregation, essential in biotechnology and pharmaceutical industries, can be obtained from the method shown here.


Interações íon-específicas (dependentes do tipo de íon presente em solução) entre duas partículas coloidais são calculadas usando a equação de Poisson-Boltzmann (PB) modificada e simulações de Monte Carlo (MC). As equações de PB apresentam bons resultados de perfis de concentração nas proximidades de um macro-íon, principalmente para soluções salinas contendo íons monovalentes. Estas equações incluem não só interações eletrostáticas, mas também potenciais de dispersão, que têm origem nas polarizabilidades de íons e proteínas, permitindo a predição de propriedades íon-específicas de sistemas coloidais. Os resultados obtidos a partir da equação de PB modificada são comparados com outros obtidos por simulação de MC e por equações integrais. Diagramas de fase e o segundo coeficiente de virial são obtidos para diferentes sais e diferentes valores de pH e força iônica, em concordância com efeitos de Hofmeister observados experimentalmente. Interações efetivas obtidas por dinâmica molecular entre cada íon e uma superfície hidrofóbica foram incluídas na equação de PB, a fim de considerar a estrutura da água e efeitos de hidratação. O método mostrou-se eficiente e adequado para descrever fenômenos onde a estrutura da água nas proximidades da interface desempenha papel essencial. Propriedades termodinâmicas importantes, relacionadas com a agregação de proteínas, essenciais em biotecnologia e indústrias farmacêuticas, podem ser obtidas pelo método aqui apresentado.


Assuntos
Coloides/química , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Proteínas/química , Termodinâmica , Modelos Químicos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA