Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 783, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039517

RESUMO

The sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.


Assuntos
Copépodes/genética , Copépodes/microbiologia , Ectoparasitoses/genética , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Genômica/métodos , Interações Hospedeiro-Parasita , Microbiota/genética , Salmão/parasitologia , Animais , Chile , Copépodes/patogenicidade , Genoma/genética , Tenacibaculum/patogenicidade
3.
Sci Data ; 8(1): 60, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574331

RESUMO

Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. In this study, we report a chromosome-scale assembly of the sea louse (C. rogercresseyi) genome based on single-molecule real-time sequencing (SMRT) and proximity ligation (Hi-C) analysis. Coding RNAs and non-coding RNAs, and specifically long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were identified through whole transcriptome sequencing from different life stages. A total of 23,686 protein-coding genes and 12,558 non-coding RNAs were annotated. In addition, 6,308 lncRNAs and 5,774 miRNAs were found to be transcriptionally active from larvae to adult stages. Taken together, this genomic resource for C. rogercresseyi represents a valuable tool to develop sustainable control strategies in the salmon aquaculture industry.


Assuntos
Copépodes/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transcriptoma , Animais , Cromossomos , Copépodes/patogenicidade , Doenças dos Peixes/parasitologia , Estágios do Ciclo de Vida/genética , Salmão/parasitologia
4.
Front Microbiol ; 10: 2986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038514

RESUMO

Polyurethanes (PU) are the sixth most produced plastics with around 18-million tons in 2016, but since they are not recyclable, they are burned or landfilled, generating damage to human health and ecosystems. To elucidate the mechanisms that landfill microbial communities perform to attack recalcitrant PU plastics, we studied the degradative activity of a mixed microbial culture, selected from a municipal landfill by its capability to grow in a water PU dispersion (WPUD) as the only carbon source, as a model for the BP8 landfill microbial community. The WPUD contains a polyether-polyurethane-acrylate (PE-PU-A) copolymer and xenobiotic additives (N-methylpyrrolidone, isopropanol and glycol ethers). To identify the changes that the BP8 microbial community culture generates to the WPUD additives and copolymer, we performed chemical and physical analyses of the biodegradation process during 25 days of cultivation. These analyses included Nuclear magnetic resonance, Fourier transform infrared spectroscopy, Thermogravimetry, Differential scanning calorimetry, Gel permeation chromatography, and Gas chromatography coupled to mass spectrometry techniques. Moreover, for revealing the BP8 community structure and its genetically encoded potential biodegradative capability we also performed a proximity ligation-based metagenomic analysis. The additives present in the WPUD were consumed early whereas the copolymer was cleaved throughout the 25-days of incubation. The analysis of the biodegradation process and the identified biodegradation products showed that BP8 cleaves esters, C-C, and the recalcitrant aromatic urethanes and ether groups by hydrolytic and oxidative mechanisms, both in the soft and the hard segments of the copolymer. The proximity ligation-based metagenomic analysis allowed the reconstruction of five genomes, three of them from novel species. In the metagenome, genes encoding known enzymes, and putative enzymes and metabolic pathways accounting for the biodegradative activity of the BP8 community over the additives and PE-PU-A copolymer were identified. This is the first study revealing the genetically encoded potential biodegradative capability of a microbial community selected from a landfill, that thrives within a WPUD system and shows potential for bioremediation of polyurethane- and xenobiotic additives-contamitated sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA