Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
Nano Lett ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311622

RESUMO

Chemoselective hydrogenation of quinoline and its derivatives is a significant strategy to achieve the corresponding 1,2,3,4-tetrahydroquinolines (py-THQ) for various potential applications. Here, we precisely constructed a titanium carbide supported atomically dispersed Pd catalyst (PdSA+NC/TiC) for quinoline hydrogenation, delivering above 99% py-THQ selectivity at complete conversion with an outstanding turnover frequency (TOF) of 463 h-1. AC-HAADF-STEM and XAFS demonstrate that the atomic dispersion of Pd includes Pd-Ti2C2 single atoms and Pd clusters with atomic-layer thickness. Theoretical calculation and experimental results revealed that H2 dissociation and subsequent hydrogenation rates were greatly promoted over Pd clusters. Although the adsorption of quinolines and intermediates are easier on Pd clusters than on Pd single atoms, the desorption of py-THQ is more favored over Pd single atoms than over Pd clusters. The desorption step may be the main reason for 5,6,7,8-tetrahydroquinoline (bz-THQ) and decahydroquinoline (DHQ) formation. Thus, a low reaction activity and py-THQ selectivity were received over PdSA/TiC and PdNP/TiC, respectively.

2.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312657

RESUMO

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Assuntos
Neurônios Colinérgicos , Giro Denteado , Células-Tronco Neurais , Neurogênese , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Giro Denteado/metabolismo , Giro Denteado/citologia , Neurogênese/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Camundongos , Proliferação de Células , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/citologia , Morfogênese , Nicho de Células-Tronco/fisiologia , Masculino
3.
Artigo em Inglês | MEDLINE | ID: mdl-39302794

RESUMO

In cooperative multiagent reinforcement learning (MARL), centralized training with decentralized execution (CTDE) has recently attracted more attention due to the physical demand. However, the most dilemma therein is the inconsistency between jointly-trained policies and individually executed actions. In this article, we propose a factorized Tchebycheff value-decomposition optimization (TVDO) method to overcome the trouble of inconsistency. In particular, a nonlinear Tchebycheff aggregation function is formulated to realize the global optimum by tightly constraining the upper bound of individual action-value bias, which is inspired by the Tchebycheff method of multiobjective optimization (MOO). We theoretically prove that, under no extra limitations, the factorized value decomposition with Tchebycheff aggregation satisfies the sufficiency and necessity of individual-global-max (IGM), which guarantees the consistency between the global and individual optimal action-value function. Empirically, in the climb and penalty game, we verify that TVDO precisely expresses the global-to-individual value decomposition with a guarantee of policy consistency. Meanwhile, we evaluate TVDO in the StarCraft multiagent challenge (SMAC) benchmark, and extensive experiments demonstrate that TVDO achieves a significant performance superiority over some SOTA MARL baselines.

4.
PeerJ ; 12: e17974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308825

RESUMO

The sugars will eventually be exported transporter (SWEET) family is a novel class of sugar transporters that play a crucial role in plant growth, development, and responses to stress. Cranberry (Vaccinium macrocarpon Ait.) is a nutritious berry with economic importance, but little is known about SWEET gene family functions in this small fruit. In this research, 13 VmSWEET genes belonging to four clades were identified in the cranberry genome for the first time. In the conserved domains, we observed seven phosphorylation sites and four amino acid residues that might be crucial for the binding function. The majority of VmSWEET genes in each clade shared similar gene structures and conserved motifs, showing that the VmSWEET genes were highly conserved during evolution. Chromosomal localization and duplication analyses showed that VmSWEET genes were unevenly distributed in eight chromosomes and two pairs of them displayed synteny. A total of 79 cis-acting elements were predicted in the promoter regions of VmSWEETs including elements responsive to plant hormones, light, growth and development and stress responses. qRT-PCR analysis showed that VmSWEET10.1 was highly expressed in flowers, VmSWEET16 was highly expressed in upright and runner stems, and VmSWEET3 was highly expressed in the leaves of both types of stems. In fruit, the expression of VmSWEET14 and VmSWEET16 was highest of all members during the young fruit stage and were downregulated as fruit matured. The expression of VmSWEET4 was higher during later developmental stages than earlier developmental stages. Furthermore, qRT-PCR results revealed a significant up-regulation of VmSWEET10.2, under osmotic, saline, salt-alkali, and aluminum stress conditions, suggesting it has a crucial role in mediating plant responses to various environmental stresses. Overall, these results provide new insights into the characteristics and evolution of VmSWEET genes. Moreover, the candidate VmSWEET genes involved in the growth, development and abiotic stress responses can be used for molecular breeding to improve cranberry fruit quality and abiotic stress resistance.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Vaccinium macrocarpon , Vaccinium macrocarpon/genética , Vaccinium macrocarpon/metabolismo , Vaccinium macrocarpon/química , Estresse Fisiológico/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Filogenia , Genoma de Planta , Desenvolvimento Vegetal/genética , Cromossomos de Plantas/genética , Sintenia/genética
5.
Nat Commun ; 15(1): 6888, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134525

RESUMO

Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.


Assuntos
Peroxidase , Zinco , Humanos , Catálise , Peroxidase/metabolismo , Peroxidase/química , Zinco/química , Zinco/metabolismo , Animais , Domínio Catalítico , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Camundongos , Linhagem Celular Tumoral , Teoria da Densidade Funcional
6.
Int J Immunopathol Pharmacol ; 38: 3946320241272550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101927

RESUMO

OBJECTIVE: To explore the effect of miR-370-3p on LPS triggering, in particular its involvement in disease progression by targeting the TLR4-NLRP3-caspase-1 cellular pyroptosis pathway in macrophages. METHODS: Human macrophage RAW264.7 was divided into 6 groups: control, LPS, LPS + inhibitor-NC, LPS + miR-370-3p inhibitor, LPS + mimics-NC and LPS + miR-370-3p mimics. RT-qPCR was used to detect the expression level of miR-370-3p and analyzed comparatively. CCK-8 and flow cytometry assays were used to detect cell viability and apoptosis. ELISA assay was used to detect the levels of IL-1ß and TNF-α in the supernatant of the cells. The WB assay was used to detect TLR4, NLRP3, Caspase-1 and GSDMD levels. RESULTS: After LPS induction, macrophage miR-370-3p levels decreased, cell viability decreased, and apoptosis increased. At the same time, the levels of TLR4, NLRP3, Caspase-1 and GSDMD increased in the cells, and the levels of IL-1ß and TNF-α increased in the cell supernatant. Compared with the LPS group, the significantly higher expression level of miR-370-3p in the cells of the LPS + miR-370-3p mimics group was accompanied by significantly higher cell viability, significantly lower apoptosis rate, significantly lower levels of TLR4, NLRP3, Caspase-1, and GSDMD in the cells, and significantly lower levels of IL-1ß and TNF-α in the cell supernatant. CONCLUSION: MiR-370-3p may be involved in anti-infective immune responses by targeting and inhibiting the macrophage TLR4-NLRP3-caspase-1 cellular pyroptosis pathway.


Assuntos
Caspase 1 , Lipopolissacarídeos , Macrófagos , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Receptor 4 Toll-Like , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Humanos , Caspase 1/metabolismo , Caspase 1/genética , Camundongos , Células RAW 264.7 , Animais , Transdução de Sinais , Interleucina-1beta/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Infecções Bacterianas/imunologia
7.
Nano Lett ; 24(36): 11286-11294, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213593

RESUMO

Herein, we propose a platinization strategy for the preparation of Pt/X catalysts with low Pt content on substrates possessing electron-rich sites (Pt/X: X = Co3O4, NiO, CeO2, Covalent Organic Framework (COF), etc.). In examples with inorganic and organic substrates, respectively, Pt/Co3O4 possesses remarkable catalytic ability toward HER, achieving a current density at an overpotential of 500 mV that is 3.22 times higher than that of commercial Pt/C. It was also confirmed by using operando Raman spectroscopy that the enhancement of catalytic activity was achieved after platinization of the COF, with a reduction of overpotential from 231 to 23 mV at 10 mA cm-2. Density functional theory (DFT) reveals that the improved catalytic activity of Pt/Co3O4 and Pt/COF originated from the re-modulation of Ptδ+ on the electronic structure and the synergistic effect of the interfacial Ptδ+/electron-rich sites. This work provides a rapid synthesis strategy for the synthesis of low-content Pt catalysts for electrocatalytic hydrogen production.

8.
J Am Chem Soc ; 146(34): 24033-24041, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146528

RESUMO

Palladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method. Pd1@ZSM-5 features Pd-O-Al/Si bonds, which can boost the domination of d-electron near the Fermi level, thereby promoting the adsorption of substrates on Pd sites and reducing the energy barrier for the semihydrogenation of alkynes. In semihydrogenation of phenylacetylene, Pd1@ZSM-5 catalyst performs the highest turnover frequency (TOF) value of 33582 molC═C/molPd/h with 96% selectivity of styrene among the reported heterogeneous catalysts and nearly 17-fold higher than that of the commercial Lindlar catalyst (1992 molC═C/molPd/h). This remarkable catalytic performance can be retained even after 6 cycles of usage. Particularly, the zeolitic confinement structure of Pd1@ZSM-5 enables precise shape-selective catalysis for alkyne reactants with a size less than 4.3 Å.

9.
BMC Oral Health ; 24(1): 919, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123139

RESUMO

OBJECTIVE: This study was designed to evaluate the five-year overall survival (OS) rate and postoperative survival time of patients diagnosed with oral squamous cell carcinoma (OSCC), as well as examine the clinical and pathological factors influencing survival outcomes in OSCC patients. METHODS: Data were collected from OSCC patients who underwent their first radical surgical intervention in the Department of Maxillofacial Surgery at the First Affiliated Hospital of Chongqing Medical University between April 2014 and December 2016. Follow-up was conducted until March 2022. RESULTS: The study included a total of 162 patients. The observed 5-year OS rate was 59.3%. Approximately 45.7% of OSCC patients experienced postoperative recurrence or metastasis, with a 5-year overall disease-free survival rate of 49.4%. There was no significant difference in the impact of sex, age, smoking, alcohol consumption, primary tumour location, depth of invasion or primary tumour size on the 5-year survival rate (p > 0.05). Univariate analysis revealed that clinical stage (Hazard Ratio = 2.239, p = 0.004), perineural invasion (PNI) (Hazard Ratio = 1.712, p = 0.03), lymph node metastasis (pN) (Hazard Ratio = 2.119, p = 0.002), pathological differentiation (Hazard Ratio = 2.715, p < 0.001), and recurrence or metastasis (Hazard Ratio = 10.02, p < 0.001) were significant factors influencing survival. Multivariate analysis further indicated that pathological differentiation (Hazard Ratio = 2.291, p = 0.001), PNI (Hazard Ratio = 1.765, p = 0.031) and recurrence or metastasis (Hazard Ratio = 9.256, p < 0.001) were independent risk factors of survival. Intriguingly, 11 OSCC patients were diagnosed with oesophageal squamous cell carcinoma (ESCC) within 1-4 years following surgery. CONCLUSION: The survival prognosis of OSCC patients is significantly associated with clinical stage, PNI, lymph node metastasis, pathological differentiation, and recurrence or metastasis. Pathological differentiation, PNI and recurrence or metastasis are independent risk factors affecting survival. Routine clinical screening for ESCC may be recommended for OSCC patients with a history of alcohol consumption and tobacco use.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Masculino , Feminino , Neoplasias Bucais/cirurgia , Neoplasias Bucais/patologia , Neoplasias Bucais/mortalidade , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/cirurgia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Idoso , Taxa de Sobrevida , Análise de Sobrevida , Adulto , Recidiva Local de Neoplasia , Metástase Linfática , Fatores de Risco , Estadiamento de Neoplasias , Idoso de 80 Anos ou mais
10.
Front Plant Sci ; 15: 1447749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211844

RESUMO

Introduction: The WRKY transcription factor (TF) family is one of the largest TF families in plants and is widely involved in responses to both biotic and abiotic stresses. Methods: To clarify the function of the WRKY family in blueberries, this study identified the WRKY genes within the blueberry genome and systematically analyzed gene characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular localization of the encoded products. Results: In this study, 57 VcWRKY genes were identified, and all encoding products had a complete WRKY heptapeptide structure and zinc-finger motif. The VcWRKY genes were divided into three subgroups (I-III) by phylogenetic analysis. Group II was divided into five subgroups: IIa, IIb, IIc, IId, and IIe. 57 VcWRKY genes were distributed unevenly across 32 chromosomes. The amino acids ranged from 172 to 841, and molecular weights varied from 19.75 to 92.28 kD. Intra-group syntenic analysis identified 12 pairs of duplicate segments. Furthermore, 34 cis-element recognition sites were identified in the promoter regions of VcWRKY genes, primarily comprising phytohormone-responsive and light-responsive elements. Comparative syntenic maps were generated to investigate the evolutionary relationships of VcWRKY genes, revealing the closest homology to dicotyledonous WRKY gene families. VcWRKY genes were predominantly expressed in the fruit flesh and roots of blueberries. Gene expression analysis showed that the responses of VcWRKY genes to stress treatments were more strongly in leaves than in roots. Notably, VcWRKY13 and VcWRKY25 exhibited significant upregulation under salt stress, alkali stress, and saline-alkali stress, and VcWRKY1 and VcWRKY13 showed notable induction under drought stress. Subcellular localization analysis confirmed that VcWRKY13 and VcWRKY25 function within the nucleus. Conclusion: These findings establish a foundation for further investigation into the functions and regulatory mechanisms of VcWRKY genes and provide guidance for selecting stress-tolerant genes in the development of blueberry cultivars.

11.
J Biol Chem ; 300(8): 107556, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002683

RESUMO

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.


Assuntos
Aplysia , Isoformas de Proteínas , Animais , Aplysia/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/genética , Taquicininas/metabolismo , Taquicininas/genética , Sequência de Aminoácidos , Transdução de Sinais , Processamento Alternativo , Humanos
12.
Hortic Res ; 11(7): uhae138, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988623

RESUMO

Blueberry belongs to the Vaccinium genus and is a highly popular fruit crop with significant economic importance. It was not until the early twentieth century that they began to be domesticated through extensive interspecific hybridization. Here, we collected 220 Vaccinium accessions from various geographical locations, including 154 from the United States, 14 from China, eight from Australia, and 29 from Europe and other countries, comprising 164 Vaccinium corymbosum, 15 Vaccinium ashei, 10 lowbush blueberries, seven half-high blueberries, and others. We present the whole-genome variation map of 220 accessions and reconstructed the hundred-year molecular history of interspecific hybridization of blueberry. We focused on the two major blueberry subgroups, the northern highbush blueberry (NHB) and southern highbush blueberry (SHB) and identified candidate genes that contribute to their distinct traits in climate adaptability and fruit quality. Our analysis unveiled the role of gene introgression from Vaccinium darrowii and V. ashei into SHB in driving the differentiation between SHB and NHB, potentially facilitating SHB's adaptation to subtropical environments. Assisted by genome-wide association studies, our analysis suggested VcTBL44 as a pivotal gene regulator governing fruit firmness in SHB. Additionally, we conducted whole-genome bisulfite sequencing on nine NHB and 12 SHB cultivars, and characterized regions that are differentially methylated between the two subgroups. In particular, we discovered that the ß-alanine metabolic pathway genes were enriched for DNA methylation changes. Our study provides high-quality genetic and epigenetic variation maps for blueberry, which offer valuable insights and resources for future blueberry breeding.

13.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000087

RESUMO

Sulfur metabolism plays a major role in plant growth and development, environmental adaptation, and material synthesis, and the sulfate transporters are the beginning of sulfur metabolism. We identified 37 potential VcSULTR genes in the blueberry genome, encoding peptides with 534 to 766 amino acids. The genes were grouped into four subfamilies in an evolutionary analysis. The 37 putative VcSULTR proteins ranged in size from 60.03 to 83.87 kDa. These proteins were predicted to be hydrophobic and mostly localize to the plasma membrane. The VcSULTR genes were distributed on 30 chromosomes; VcSULTR3;5b and VcSULTR3;5c were the only tandemly repeated genes. The VcSULTR promoters contained cis-acting elements related to the fungal symbiosis and stress responses. The transcript levels of the VcSULTRs differed among blueberry organs and changed in response to ericoid mycorrhizal fungi and sulfate treatments. A subcellular localization analysis showed that VcSULTR2;1c localized to, and functioned in, the plasma membrane and chloroplast. The virus-induced gene knock-down of VcSULTR2;1c resulted in a significantly decreased endogenous sulfate content, and an up-regulation of genes encoding key enzymes in sulfur metabolism (VcATPS2 and VcSiR1). These findings enhance our understanding of mycorrhizal-fungi-mediated sulfate transport in blueberry, and lay the foundation for further research on blueberry-mycorrhizal symbiosis.


Assuntos
Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Micorrizas , Filogenia , Proteínas de Plantas , Transportadores de Sulfato , Micorrizas/genética , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/microbiologia , Mirtilos Azuis (Planta)/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Sulfatos/metabolismo , Simbiose/genética , Genoma de Planta
14.
J Am Chem Soc ; 146(29): 20518-20529, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995120

RESUMO

Despite the extensive development of non-noble metals for the N-alkylation of amines with alcohols, the exploitation of catalysts with high selectivity, activity, and stability still faces challenges. The controllable modification of single-atom sites through asymmetric coordination with a second heteroatom offers new opportunities for enhancing the intrinsic activity of transition metal single-atom catalysts. Here, we prepared the asymmetric N/P hybrid coordination of single-atom Co1-N3P1 by absorbing the Co-P complex on ZIF-8 using a concise impregnation-pyrolysis process. The catalyst exhibits ultrahigh activity and selectivity in the N-alkylation of aniline and benzyl alcohol, achieving a turnover number (TON) value of 3480 and a turnover frequency (TOF) value of 174-h. The TON value is 1 order of magnitude higher than the reported catalysts and even 37-fold higher than that of the homogeneous catalyst CoCl2(PPh3)2. Furthermore, the catalyst maintains its high activity and selectivity even after 6 cycles of usage. Controlling experiments and isotope labeling experiments confirm that in the asymmetric Co1-N3P1 system, the N-alkylation of aniline with benzyl alcohol proceeds via a transfer hydrogenation mechanism involving the monohydride route. Theoretical calculations prove that the superior activity of asymmetric Co1-N3P1 is attributed to the higher d-band energy level of Co sites, which leads to a more stable four-membered ring transition state and a lower reaction energy barrier compared to symmetrical Co1-N4.

15.
J Am Chem Soc ; 146(30): 20668-20677, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031766

RESUMO

Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.

16.
Nat Commun ; 15(1): 6174, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039047

RESUMO

The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.


Assuntos
Cobre , Peróxido de Hidrogênio , Peroxidase , Tolerância a Radiação , Cobre/química , Animais , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Peroxidase/química , Camundongos , Linhagem Celular Tumoral , Catálise/efeitos da radiação , Cinética
17.
Plant Cell Rep ; 43(7): 163, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842544

RESUMO

KEY MESSAGE: Calcium polypeptide plays a key role during cadmium stress responses in rice, which is involved in increasing peroxidase activity, modulating pectin methylesterase activity, and regulating cell wall by reducing malondialdehyde content. Cadmium (Cd) contamination threatens agriculture and human health globally, emphasizing the need for sustainable methods to reduce cadmium toxicity in crops. Calcium polypeptide (CaP) is a highly water-soluble small molecular peptide acknowledged for its potential as an organic fertilizer in promoting plant growth. However, it is still unknown whether CaP has effects on mitigating Cd toxicity. Here, we investigated the effect of CaP application on the ability to tolerate toxic Cd in rice. We evaluated the impact of CaP on rice seedlings under varying Cd stress conditions and investigated the effect mechanism of CaP mitigating Cd toxicity by Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, immunofluorescent labeling, and biochemical analysis. We found a notable alleviation of Cd toxicity by reduced malondialdehyde content and increased peroxidase activity. In addition, our findings reveal that CaP induces structural alterations in the root cell wall by modulating pectin methylesterase activity. Altogether, our results confirm that CaP not only promoted biomass accumulation but also reduced Cd concentration in rice. This study contributes valuable insights to sustainable strategies for addressing Cd contamination in agricultural ecosystems.


Assuntos
Cádmio , Malondialdeído , Oryza , Estresse Oxidativo , Pectinas , Oryza/efeitos dos fármacos , Oryza/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pectinas/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Peptídeos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
18.
iScience ; 27(6): 109988, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883835

RESUMO

The association between visual abnormalities and impairments in cerebral blood flow and brain region potentially results in neural dysfunction of amblyopia. Nevertheless, the differences in the complex mechanisms of brain neural network coupling and its relationship with neurotransmitters remain unclear. Here, the neurovascular coupling mechanism and neurotransmitter activity in children with anisometropic amblyopia (AA) and visual deprivation amblyopia (VDA) was explored. The neurovascular coupling of 17 brain regions in amblyopia children was significantly abnormal than in normal controls. The classification abilities of coupling units in brain regions differed between two types of amblyopia. Correlations between different coupling effects and neurotransmitters were different. The findings of this study demonstrate a correlation between the neurovascular coupling and neurotransmitter in children with AA and VDA, implying their impaired neurovascular coupling function and potential molecular underpinnings. The neuroimaging evidence revealed herein offers potential for the development of neural therapies for amblyopia.

19.
Small ; 20(37): e2401502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38716798

RESUMO

All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.

20.
Plant Physiol Biochem ; 211: 108677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703499

RESUMO

Phosphorus (P) plays a crucial role in facilitating plant adaptation to cadmium (Cd) stress. However, the molecular mechanisms underlying P-mediated responses to Cd stress in roots remain elusive. This study investigates the effects of P on the growth, physiology, transcriptome, and metabolome of Salix caprea under Cd stress. The results indicate that Cd significantly inhibits plant growth, while sufficient P alleviates this inhibition. Under Cd exposure, P sufficiency resulted in increased Cd accumulation in roots, along with reduced oxidative stress levels (superoxide anion and hydrogen peroxide contents were reduced by 16.8% and 30.1%, respectively). This phenomenon can be attributed to the enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), as well as increased levels of antioxidants including ascorbic acid (AsA) and flavonoids under sufficient P conditions. A total of 4208 differentially expressed genes (DEGs) and 552 differentially accumulated metabolites (DAMs) were identified in the transcriptomic and metabolomic analyses, with 2596 DEGs and 113 DAMs identified among treatments with different P levels under Cd stress, respectively. Further combined analyses reveal the potential roles of several pathways in P-mediated Cd detoxification, including flavonoid biosynthesis, ascorbate biosynthesis, and plant hormone signal transduction pathways. Notably, sufficient P upregulates the expression of genes including HMA, ZIP, NRAMP and CAX, all predicted to localize to the cell membrane. This may elucidate the heightened Cd accumulation under sufficient P conditions. These findings provide insights into the roles of P in enhancing plant resistance to Cd stress and improving of phytoremediation.


Assuntos
Cádmio , Fósforo , Raízes de Plantas , Salix , Transcriptoma , Cádmio/metabolismo , Cádmio/toxicidade , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Fósforo/metabolismo , Salix/metabolismo , Salix/genética , Salix/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Antioxidantes/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA