Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Clin Exp Med ; 24(1): 236, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361090

RESUMO

Proteinuria is a biomarker of kidney injury that typically results from glomerular and/or tubulointerstitial disease. Whereas kidney impairment with normal urinary protein excretion is usually less focused and understudied. We conducted a retrospective review of the renal histopathology of the patients with variable degrees of unexplained renal insufficiency but with normal range proteinuria between 2014 and 2024 of  three university teaching hospitals in Shenzhen city of Southern  China. Patients with kidney dysfunction of undetermined or uncertain etiology and with normal urinary protein excretion (defined by a 24hr urinary protein excretion < 150 mg or spot urinary protein to creatinine ratio [PCR] < 150 mg/g) were enrolled and analyzed. In a total of 2405 patients, 53 (2.2%) fulfilled the inclusion criteria  (male/female 40/13, age 47.3 ± 14.3 years) with a mean eGFR of 46.6 ± 16.8 ml/min per 1.73 m2. Glomerular disease (GD) was the most frequent pathological finding identified in 23 (43.4%) patients, while 19 (35.8%) cases  showed tubulointerstitial disease (TID) and 11 (20.8%) patients exhibited small vascular disease (SVD). Patients in the TID had the lowest mean eGFR and the highest numerical 24hr urinary protein excretion among the three groups. The incidence of acute kidney injury was significantly higher in TID than in other two groups. The patients in the SVD group had the highest fraction of underlying hypertension. Kidney dysfunction with normal range proteinuria may be related with, in descending order of probablity,  glomerular, tubulointerstitial and small vascular diseases. Renal biopsies were proved useful in informing therapeutic choice, long-term management and in predicting prognosis in this setting.


Assuntos
Rim , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , China/epidemiologia , Rim/patologia , Proteinúria , Taxa de Filtração Glomerular , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Idoso
2.
Heliyon ; 10(16): e36521, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39258200

RESUMO

The corrosion resistance of M390 powder metallurgical martensitic stainless steel with different tempering temperatures was investigated by potentiodynamic polarization measurements, salt spray tests, and microstructural analyses utilizing scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tempering temperature had no significant effect on the size and volume fraction of carbides. The corrosion resistance of M390 steel gradually deteriorated with increasing tempering temperature, and a loss passivation (LOP) effect was observed when tempered at 450 °C, 500 °C, and 550 °C. Transmission electron microscopy (TEM) analysis showed that the width of the Cr-depleted zones around the undissolved M7C3 carbides increased with increasing tempering temperature, while the Cr content in these zones decreased, which was the main reason for the deterioration of corrosion resistance. This study offers valuable insights into optimizing the tempering process to improve the corrosion resistance of M390 steel for practical applications.

3.
Front Vet Sci ; 11: 1440769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315085

RESUMO

Introduction: Porcine Parvovirus (PPV) is a significant pathogen in the pig industry, with eight genotypes, including PPV7, identified since its emergence in 2016. Co-infections with viruses such as Porcine Circovirus 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) pose serious risks to swine health. Thus, there is an urgent need for rapid, sensitive, and specific detection methods suitable for use in field settings or laboratories with limited resources. Methods: We developed a CRISPR/Cas12a-based assay combined with recombinase polymerase amplification (RPA) for the rapid detection of PPV7. Specific RPA primers and five CRISPR RNAs (crRNAs) were designed to target a highly conserved region within the NS1 gene of PPV7. Optimization of crRNA and single-stranded DNA (ssDNA) concentrations was performed to enhance the assay's performance. Results: CrRNA optimization identified crRNA-05 as the optimal candidate for Cas12a-based detection of PPV7, as all synthesized crRNAs demonstrated similar performance. The optimal crRNA concentration was determined to be 200 nM, yielding consistent results across tested concentrations. For ssDNA optimization, the strongest fluorescence signal was achieved with 500 nM of the FAM-BHQ ssDNA receptor. The assay showed a minimal detection limit of 100copies/µl for PPV7, confirmed through fluorescence and lateral flow detection methods. Specificity testing indicated that only PPV7 DNA samples returned positive results, confirming the assay's accuracy. In tests of 50 lung tissue samples from diseased pigs, the RPA-Cas12a assay identified 29 positive samples (58%), surpassing the 22 positive samples (44%) detected by conventional PCR. This highlights the RPA-Cas12a method's enhanced detection capability and its potential utility in clinical surveillance and management of PPV7 in swine populations. Discussion: The RPA-Cas12a assay effectively detects PPV7 in clinical samples, enhancing disease surveillance and control in pigs. Its adaptability to resource-limited settings significantly improves PPV7 management and prevention strategies, thereby supporting the overall health and development of the pig industry.

4.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4178-4187, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307750

RESUMO

This study aimed to investigate the regulatory mechanism of Linggui Zhugan Decoction(LGZGD)-medicated serum on the fibrosis of cardiac fibroblasts(CFs) and the protein expression of the Wnt/ß-catenin signaling pathway. Blank serum and LGZGD-medicated serum were prepared, and primary CFs were isolated and cultured using trypsin-collagenase digestion and differential adhesion method. Immunofluorescence labeling was used to identify primary CFs. Cells were divided into normal control group, model group, 20% blank serum group, and 5%, 10%, and 20% LGZGD-medicated serum groups. Except for the normal control group, all other groups were stimulated with hydrogen peroxide(H_2O_2) after pretreatment with 20% blank serum or 5%, 10%, 20% LGZGD-medicated serum for 12 hours to establish a model of fibrosis in primary CFs. Scratch healing assay was used to observe cell migration ability. ELISA was used to detect the content of collagen type Ⅰ(Col Ⅰ) and type Ⅲ(Col Ⅲ). Western blot was used to detect the protein expression of α-smooth muscle actin(α-SMA), Wnt1, glycogen synthase kinase 3ß(GSK-3ß), phosphorylated GSK-3ß(p-GSK-3ß), ß-catenin, and nuclear ß-catenin. RT-qPCR was used to detect the gene expression of ß-catenin and matrix metalloproteinase 9(MMP9), and immunofluorescence technique was used to detect the expression and localization of key proteins α-SMA and ß-catenin. CFs with Wnt1 overexpression were prepared and treated with H_2O_2. The following groups were set up: normal control group, model group, 20% LGZGD-medicated serum group, empty plasmid+20% LGZGD-medicated serum group, and Wnt1 overexpression+20% LGZGD-medicated serum group. ELISA was used to detect the content and ratio of Col Ⅰ and Col Ⅲ. Western blot was used to detect the protein expression of α-SMA, Wnt1, GSK-3ß, p-GSK-3ß, ß-catenin, and nuclear ß-catenin. RT-qPCR was used to detect the gene expression of ß-catenin and MMP9. Immunofluorescence staining showed that CFs expressed Vimentin positively, appearing green, with blue nuclei and purity greater than 90%, which were identified as primary CFs. RESULTS:: showed that compared with the normal control group, CFs in the model group had enhanced healing rate, increased content of Col Ⅰ and Col Ⅲ, increased ratio of Col Ⅰ/Col Ⅲ, upregulated protein expression of α-SMA, Wnt1, p-GSK-3ß, ß-catenin, nuclear ß-catenin, decreased GSK-3ß expression, elevated mRNA expression of ß-catenin and MMP9, and enhanced fluorescence intensity and expression of ß-catenin and α-SMA. Compared with the model group, 5%, 10%, 20% LGZGD-medicated serum significantly inhibited cell migration ability, reduced the content of Col Ⅰ and Col Ⅲ, decreased ratio of Col Ⅰ/Col Ⅲ, downregulated protein expression of α-SMA, Wnt1, p-GSK-3ß, ß-catenin, nuclear ß-catenin, increased GSK-3ß expression, decreased mRNA expression of ß-catenin and MMP9, and reduced fluorescence intensity and expression of ß-catenin and α-SMA. Compared with the empty plasmid+20% LGZGD-medicated serum group, the effect of LGZGD-medicated serum was significantly reversed after overexpression of Wnt1. LGZGD can reduce excessive deposition of collagen fibers, inhibit excessive proliferation of fibroblasts, and improve the process of myocardial fibrosis. The improvement of myocardial fibrosis by LGZGD is related to the regulation of the Wnt/ß-catenin pathway, reduction of collagen deposition, and protection of myocardial cells.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Miocárdio , Ratos Sprague-Dawley , Via de Sinalização Wnt , beta Catenina , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , beta Catenina/metabolismo , beta Catenina/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células Cultivadas
5.
World J Diabetes ; 15(9): 1942-1961, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39280184

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Its blindness rate is high; therefore, finding a reasonable and safe treatment plan to prevent and control DR is crucial. Currently, there are abundant and diverse research results on the treatment of DR by Chinese medicine Traditional Chinese medicine compounds are potentially advantageous for DR prevention and treatment because of its safe and effective therapeutic effects. AIM: To investigate the effects of Buqing granule (BQKL) on DR and its mechanism from a systemic perspective and at the molecular level by combining network pharmacology and in vivo experiments. METHODS: This study collected information on the drug targets of BQKL and the therapeutic targets of DR for intersecting target gene analysis and protein-protein interactions (PPI), identified various biological pathways related to DR treatment by BQKL through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, and preliminarily validated the screened core targets by molecular docking. Furthermore, we constructed a diabetic rat model with a high-fat and high-sugar diet and intraperitoneal streptozotocin injection, and administered the appropriate drugs for 12 weeks after the model was successfully induced. Body mass and fasting blood glucose and lipid levels were measured, and pathological changes in retinal tissue were detected by hematoxylin and eosin staining. ELISA was used to detect the oxidative stress index expression in serum and retinal tissue, and immunohistochemistry, real-time quantitative reverse transcription PCR, and western blotting were used to verify the changes in the expression of core targets. RESULTS: Six potential therapeutic targets of BQKL for DR treatment, including Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3, were screened using PPI. Enrichment analysis indicated that the MAPK signaling pathway might be the core target pathway of BQKL in DR treatment. Molecular docking prediction indicated that BQKL stably bound to these core targets. In vivo experiments have shown that compared with those in the Control group, rats in the Model group had statistically significant (P < 0.05) severe retinal histopathological damage; elevated blood glucose, lipid, and malondialdehyde (MDA) levels; increased Caspase-3, c-Jun, and TP53 protein expression; and reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, ganglion cell number, AKT1, MAPK1, and MAPK3 protein expression. Compared with the Model group, BQKL group had reduced histopathological retinal damage and the expression of blood glucose and lipids, MDA level, Caspase-3, c-Jun and TP53 proteins were reduced, while the expression of SOD, GSH-Px level, the number of ganglion cells, AKT1, MAPK1, and MAPK3 proteins were elevated. These differences were statistically significant (P < 0.05). CONCLUSION: BQKL can delay DR onset and progression by attenuating oxidative stress and inflammatory responses and regulating Caspase-3, c-Jun, TP53, AKT1, MAPK1, and MAPK3 proteins in the MAPK signaling pathway mediates these alterations.

6.
J Hazard Mater ; 480: 135828, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39321477

RESUMO

Heavy metal stress threatens plant growth and productivity. In this study, we investigated the effects of CuSO4 and ZnSO4 toxicity on sorghum seedlings, focusing on their impact on biomass, germination rates, growth parameters, antioxidant enzyme activities, gene expression profiles, and stress resistance mechanisms. As a result, eight sorghum superoxide dismutase (SOD) genes were identified, and their evolutionary relationships with cis-acting regulatory elements and their expressional patterns were evaluated. Integrating transcriptomic data revealed a key SOD member SbCSD1 that might contribute to plant abiotic stress resistance. Furthermore, SbCSD1 overexpression enhanced plant tolerance to CuSO4 and ZnSO4 stress by regulating SOD activity and interacting with copper chaperone for superoxide dismutase 1 (CCS1) in the plant nucleus and cytoplasm. Meanwhile, silencing CCS1 in SbCSD1-overexpressing plants revealed that SbCSD1 and CCS1 synergistically contribute to Cu stress tolerance. By integrating transcriptomic and genetic data, herein we provide novel insights into the orchestration of plant responses to heavy-metal stress in sorghum by SOD.

7.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 2916-2933, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319715

RESUMO

The human gut is a complex ecosystem harboring rich microbes that play a key role in the nutrient absorption, drug metabolism, and immune responses. With the continuous development of microfluidics and organ-on-a-chip, gut-on-a-chip has become a powerful tool for modeling host-microbe interactions. The chip is able to mimic the complex physiological environment of the human gut in vitro, providing a unique platform for studying host-microbe interactions. Firstly, we introduce the physiological characteristics of the human gut. Secondly, we comprehensively summarize the advantages of the microfluidic chip in vitro recapitulating the intestinal system by integrating microenvironmental factors, such as complex cell components, dynamic fluids, oxygen gradients, and mechanical mechanics. Thirdly, we expound the key performance indicators for evaluating the construction performance of gut-on-a-chip. In addition, we review the progress of gut-on-a-chip models in the research on gut microecology, disease modeling, and drug evaluation. Finally, we highlight the challenges and prospects in the applications of the emerging technology. The above is summarized with a view to informing the application of gut-on-a-chip for indepth studies of gut microbe-host interactions.


Assuntos
Microbioma Gastrointestinal , Dispositivos Lab-On-A-Chip , Humanos , Interações entre Hospedeiro e Microrganismos , Trato Gastrointestinal/microbiologia , Intestinos/microbiologia
8.
Bioact Mater ; 42: 140-164, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39280585

RESUMO

As a powerful paradigm, artificial intelligence (AI) is rapidly impacting every aspect of our day-to-day life and scientific research through interdisciplinary transformations. Living human organoids (LOs) have a great potential for in vitro reshaping many aspects of in vivo true human organs, including organ development, disease occurrence, and drug responses. To date, AI has driven the revolutionary advances of human organoids in life science, precision medicine and pharmaceutical science in an unprecedented way. Herein, we provide a forward-looking review, the frontiers of LOs, covering the engineered construction strategies and multidisciplinary technologies for developing LOs, highlighting the cutting-edge achievements and the prospective applications of AI in LOs, particularly in biological study, disease occurrence, disease diagnosis and prediction and drug screening in preclinical assay. Moreover, we shed light on the new research trends harnessing the power of AI for LO research in the context of multidisciplinary technologies. The aim of this paper is to motivate researchers to explore organ function throughout the human life cycle, narrow the gap between in vitro microphysiological models and the real human body, accurately predict human-related responses to external stimuli (cues and drugs), accelerate the preclinical-to-clinical transformation, and ultimately enhance the health and well-being of patients.

9.
AAPS J ; 26(5): 90, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107477

RESUMO

Changes to blood-brain barrier structure and function may affect the delivery of drugs into the brain. It is worthwhile to exploring more study on how the blood-brain barrier changes in structure and function and how that affects drug transport in high-altitude hypoxic environment. The DIA high-throughput sequencing technique indicate that the rats blood-brain barrier has been identified to have 7252 proteins overall and 8 tight junction proteins, among which Claudin-7 was a plateau-specific tight junction protein under high-altitude hypoxia, and based on the interaction network study, 2421 proteins are found to interact with one another, with ZO-1 being the primary target. The results of the projected gene function analysis demonstrated that changes in tight junction proteins are related to the control of TRP channels by inflammatory mediators, the wnt signaling pathway, the ABC transporter system, and drug metabolism-CYP450 enzyme regulation. Additionally, the electron microscopy, the Evans blue combination with confocal laser scanning microscopy, and the Western Blot and RT-qPCR revealed that high-altitude hypoxic environment induces blood-brain barrier tight junctions to open, blood-brain barrier permeability increases, ZO-1, Occludin, Claudin-5 protein and mRNA expression decreased. Our research implies that structural and functional alterations in the blood-brain barrier induced by high altitude hypoxia may impact drug transport inside the central nervous system, and that drug transporters and drug-metabolizing enzymes may be key players in this process.


Assuntos
Barreira Hematoencefálica , Proteínas de Junções Íntimas , Animais , Barreira Hematoencefálica/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Ratos , Hipóxia/metabolismo , Masculino , Altitude , Ratos Sprague-Dawley , Transporte Biológico , Permeabilidade , Junções Íntimas/metabolismo
10.
Molecules ; 29(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203034

RESUMO

Investigating the physicochemical properties and embedding forms of residual carbon (RC) and slag particles (SPs) in coal gasification fine slag (FS) is the basis for achieving its separation and utilization. An in-depth understanding of their compositional characteristics allows for targeted treatment and utilization programs for different components. In this work, the physicochemical properties and embedding forms of RC and SPs in FS were systematically investigated. An innovative calculation method is proposed to determine the mass fraction of dispersed carbon particles, dispersed mineral-rich particles, and carbon-ash combined particles by using a high-temperature heating stage coupled with an optical microscope. The unburned RC with a rough, loose surface and a well-developed pore structure acted as a framework in which the smaller spherical SPs with a smooth surface were embedded. In addition, the sieving pretreatment process facilitated the enrichment of the RC. Moreover, the RC content showed significant dependencies according to the FS particle size. For FS with a particle size of 0.075-0.150 mm, the mass proportions of dispersed carbon, ash particles, and the carbon-ash combination were 15.19%, 38.72%, and 46.09%, respectively. These findings provide basic data and reliable technical support for the subsequent carbon and ash separation process and the comprehensive utilization of coal gasification slag.

11.
Materials (Basel) ; 17(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124326

RESUMO

The aim of this paper is to explore an effective model for predicting the compressive strength of concrete using machine learning technology, as well as to interpret the model using an interpretable method, which overcomes the limitation of the unknowable prediction processes of previous machine learning models. An experimental database containing 228 samples of the compressive strength of standard cubic specimens was built in this study, and six algorithms were applied to build the predictive model. The results show that the XGBoost model has the highest prediction accuracy among all models, as the R2 of the training set and testing set are 0.982 and 0.966, respectively. Further analysis was conducted on the XGBoost model to discuss its applicability. The main steps include the following: (i) obtaining key features, (ii) obtaining trends in the evolution of features, (iii) single-sample analysis, and (iv) conducting a correlation analysis to explore methods of visualizing the variations in the factors that exert influence. The interpretability analyses on the XGBoost model show that the contribution to the compressive strength by each factor is highly in line with the conventional theory. In summary, the XGBoost model proved to be effective in predicting concrete's compressive strength.

12.
Front Nephrol ; 4: 1413496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155928

RESUMO

A 71-year-old man with a 20-year history of grade 3 hypertension experienced kidney dysfunction 2 years earlier. His serum creatinine (SCr) at the time was 140 µmol/L [with estimated glomerular filtration rate (eGFR) of 43.9 ml/min per 1.73m2], for which he received irbesartan since. At initial presentation, the spot urine dipstick protein was 1+, with an albumin-to-creatinine ratio of 230 mg/g (0-30) and normal urine sediments. The SCr was 176 µmol/L (eGFR = 32.8 ml/min per 1.73m2). The hemoglobulin (Hb) level decreased from 102 to 96 g/L despite oral ferrous succinate 100 mg twice daily starting 2 months ago. Roxadustat (ROXA) 50 mg (body weight, 70 kg) three times weekly was then prescribed. Unfortunately, the patient mistakenly took the drug at 50 mg three times a day (i.e., 1,050 mg instead of the intended 150 mg per week), which was 3.5 times the recommended starting dose for non-dialysis-dependent chronic kidney disease (CKD) patients (100 mg three times weekly for body weight >60 kg) and two times the highest drug manual-recommended weekly dose (2.5 mg/kg three times weekly) approved in the country. When the attending nephrologist discovered the misuse 1 month later, the patient reported no apparent discomfort, and his home blood pressure was in the range 110-130/60-80 mmHg. Repeat blood tests showed that the Hb increased from 96 to 163 g/L and the SCr from 199 to 201 µmol/L in a month. The serum alanine transaminase (ALT) remained within the normal range (from 12 U/L at baseline to 20 U/L), while the serum total and indirect bilirubin levels were slightly elevated. ROXA was withheld immediately. In 30 days, the serum bilirubin returned to baseline, but the Hb decreased from 163 to 140 g/L, and then to 108 g/L after 3 months. On the other hand, the SCr increased from 179 to 203 µmol/L. At 9 months after the initial dosing, when the SCr increased to 256 µmol/L and the Hb decreased to 94 g/L again, ROXA 50 mg three times weekly was reinitiated uneventfully. Herein, by introducing a case who erroneously consumed twice the highest recommended dose of ROXA for a month, but had apparently no obvious discomfort or unfavorable consequence, we attempt to provide a brief overview of the mechanism of action, characteristics, drug metabolism, and side effect profile associated with this agent.

13.
Gut Microbes ; 16(1): 2391535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39182245

RESUMO

BACKGROUND: Chronic infection with the neurotropic parasite Toxoplasma gondii (T. gondii) can cause anxiety and gut microbiota dysbiosis in hosts. However, the potential role of gut microbiota in anxiety induced by the parasite remains unclear. METHODS: C57BL/6J mice were infected with 10 cysts of T. gondii. Antibiotic depletion of gut microbiota and fecal microbiota transplantation experiments were utilized to investigate the causal relationship between gut microbiota and anxiety. Anxiety-like behaviors were examined by the elevated plus maze test and the open field test; blood, feces, colon and amygdala were collected to evaluate the profiles of serum endotoxin (Lipopolysaccharide, LPS) and serotonin (5-hydroxytryptamine, 5-HT), gut microbiota composition, metabolomics, global transcriptome and neuroinflammation in the amygdala. Furthermore, the effects of Diethyl butylmalonate (DBM, an inhibitor of mitochondrial succinate transporter, which causes the accumulation of endogenous succinate) on the disorders of the gut-brain axis were evaluated. RESULTS: Here, we found that T. gondii chronic infection induced anxiety-like behaviors and disturbed the composition of the gut microbiota in mice. In the amygdala, T. gondii infection triggered the microglial activation and neuroinflammation. In the colon, T. gondii infection caused the intestinal dyshomeostasis including elevated colonic inflammation, enhanced bacterial endotoxin translocation to blood and compromised intestinal barrier. In the serum, T. gondii infection increased the LPS levels and decreased the 5-HT levels. Interestingly, antibiotics ablation of gut microbiota alleviated the anxiety-like behaviors induced by T. gondii infection. More importantly, transplantation of the fecal microbiota from T. gondii-infected mice resulted in anxiety and the transcriptomic alteration in the amygdala of the antibiotic-pretreated mice. Notably, the decreased abundance of succinate-producing bacteria and the decreased production of succinate were observed in the feces of the T. gondii-infected mice. Moreover, DBM administration ameliorated the anxiety and gut barrier impairment induced by T. gondii infection. CONCLUSIONS: The present study uncovers a novel role of gut microbiota in mediating the anxiety-like behaviors induced by chronic T. gondii infection. Moreover, we show that DBM supplementation has a beneficial effect on anxiety. Overall, these findings provide new insights into the treatment of T. gondii-related mental disorders.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Toxoplasma , Animais , Camundongos , Ansiedade/microbiologia , Toxoplasma/fisiologia , Masculino , Transplante de Microbiota Fecal , Disbiose/microbiologia , Tonsila do Cerebelo/metabolismo , Comportamento Animal , Toxoplasmose/fisiopatologia , Toxoplasmose/psicologia , Toxoplasmose/parasitologia , Toxoplasmose/microbiologia , Doença Crônica , Eixo Encéfalo-Intestino/fisiologia , Modelos Animais de Doenças , Colo/microbiologia , Colo/parasitologia
14.
Curr Drug Metab ; 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108116

RESUMO

Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of high-altitude hypoxia on sleep.

15.
Zhonghua Nan Ke Xue ; 30(2): 139-144, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-39177347

RESUMO

OBJECTIVE: To investigate the incidence of comorbid ED with lower urinary tract symptoms (LUTS) and its risk factors in BPH patients. METHODS: Based on inclusion and exclusion criteria, we selected BPH patients visiting the outpatient department of the Second Xiangya Hospital of Central South University from January 2020 to January 2023. We collected the general and clinical data from the patients, including age, height, body weight, abdominal circumference, hip circumference, blood pressure, blood routine, liver function, kidney function, blood lipids and fasting blood glucose, obtained their IPSS, quality of life (QOL) scores, and IIEF-5 scores by questionnaire investigation, and performed data processing and analysis with the SPSS 22.0 software. RESULTS: The incidence rate of comorbid ED with LUTS in the BPH patients rose with the increase of age, 36.46% in the 45-49-year group, 43.72% in the 50-54-year group, 53.66% in the 55-59-year group, 69.23% in the 60-64-year group, and 78.74% in the 65-70-year group. The lipid accumulation product (LAP), visceral adiposity index (VAI), triglycerides and glucose (TyG), hepatic steatosis index (HSI), body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) were correlated positively with IPSS scores and negatively with IIEF-5 scores, while LDL-C and total cholesterol (TC) negatively with IPSS scores and positively with IIEF-5 scores. CONCLUSION: The incidence of comorbid ED with LUTS in BPH patients increases with age. The risk factors for this comorbidity include hypertension, dyslipidemia, diabetes, BMI, and lifestyle, and the risk of the condition can be effectively assessed by LAP, VAI, TYG, HSI, BMI, WHtR, WHR, TG and HDL-C.


Assuntos
Sintomas do Trato Urinário Inferior , Hiperplasia Prostática , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Sintomas do Trato Urinário Inferior/epidemiologia , Hiperplasia Prostática/epidemiologia , Hiperplasia Prostática/complicações , Idoso , Incidência , Disfunção Erétil/epidemiologia , Comorbidade , Qualidade de Vida , Inquéritos e Questionários , Índice de Massa Corporal
16.
J Agric Food Chem ; 72(32): 17746-17761, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39079007

RESUMO

In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Contaminação de Alimentos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Animais , Transistores Eletrônicos , Humanos , Processos Fotoquímicos
17.
J Colloid Interface Sci ; 675: 1-13, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38964120

RESUMO

Birnessite-type MnO2 (δ-MnO2) exhibits great potential as a cathode material for aqueous zinc-ion batteries (AZIBs). However, the structural instability and sluggish reaction kinetics restrict its further application. Herein, a unique protons intercalation strategy was utilized to simultaneously modify the interlayer environment and transition metal layers of δ-MnO2. The intercalated protons directly form strong O  H bonds with the adjacent oxygens, while the increased H2O molecules also establish a hydrogen bond network (O  H···O) between H2O molecules or bond with adjacent oxygens. Based on the Grotthuss mechanism, these bondings ultimately enhance the stability of layered structures and facilitate the rapid diffusion of protons. Moreover, the introduction of protons induces numerous oxygen vacancies, reduces steric hindrance, and accelerates ion transport kinetics. Consequently, the protons intercalated δ-MnO2 (H-MnO2-x) demonstrates exceptional specific capacity of 401.7 mAh/g at 0.1 A/g and a fast-charging performance over 1000 cycles. Density functional theory analysis confirms the improved electronic conductivity and reduced diffusion energy barrier. Most importantly, electrochemical quartz crystal microbalance tests combining with ex-situ characterizations verify the inhibitory effect of the interlayer proton environment on basic zinc sulfate formation. Protons intercalation behavior provides a promising avenue for the development of MnO2 as well as other cathodes in AZIBs.

18.
Chem Commun (Camb) ; 60(59): 7598-7601, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38952286

RESUMO

Mimicking the dissipative assemblies found in living systems fueled by bioenergy, we present a novel chemical fuel-driven transient 2D SOF, formed via the redox reaction-driven transient self-assembly of tetraphenylene-based structural units and cucurbit[8]uril (CB[8]). The system was initiated by adding sodium dithionite (SDT) as the fuel, leading to the formation of 2D SOFs through 2 : 1 host-guest complexation between the viologen cation radical and CB[8]. These 2D SOFs then spontaneously disassemble over time as the radicals are oxidized by air. The temporal assembly and lifetimes of these transient SOFs can be controlled by adjusting the concentrations of the fuel. Moreover, the resulting transient 2D SOFs exhibited remarkable potential as catalysts for the green synthesis of benzyl sulfones in water.

19.
Micromachines (Basel) ; 15(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39064321

RESUMO

The acoustically actuated nanomechanical magnetoelectric (ME) antennas represent a promising new technology that can significantly reduce antenna size by 1-2 orders of magnitude compared to traditional antennas. However, current ME antennas face challenges such as low antenna gain and narrow operating bandwidth, limiting their engineering applications. In this paper, we enhance the bandwidth and radiation performance of ME antennas through structural optimization, leveraging theoretical analysis and numerical simulations. Our findings indicate that optimizing the inner diameter of the ring-shaped ME antenna can elevate the average stress of the magnetic layer, leading to improved radiation performance and bandwidth compared to circular ME antennas. We establish an optimization model for the radiation performance of the ME antenna and conduct shape optimization simulations using COMSOL Multiphysics. The results of the Multiphysics field optimization align with the stress concentration theory, demonstrating a strong correlation between the radiation performance and bandwidth of the ME antenna with the average stress of the magnetic film. The resonant frequency in the thickness vibration mode is determined to be 170 MHz. Furthermore, shape optimization can enhance the bandwidth by up to 104% compared to circular ME antenna structures of the same size.

20.
Sci Total Environ ; 949: 175092, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079645

RESUMO

Plant litter is an important source of soil organic carbon (SOC) in terrestrial ecosystems, and the pattern of litter inputs is also influenced by global change and human activities. However, the current understanding of the impact of changes in litter inputs on SOC dynamics remains contentious, and the mechanisms by which changes in litter inputs affect SOC have rarely been investigated from the perspective of microbial carbon use efficiency (CUE). We conducted a 1-year experiment with litter treatments (no aboveground litter (NL), natural aboveground litter (CK), and double aboveground litter (DL)) in Robinia pseudoacacia plantation forest on the Loess Plateau. The objective was to assess how changes in litter input affect SOC accumulation in forest soils from the perspective of microbial CUE. Results showed that NL increased soil microbial C limitation by 77.11 % (0-10 cm) compared to CK, while it had a negligible effect on nitrogen and phosphorus limitation. In contrast, DL had no significant effect on soil microbial nutrient limitation. Furthermore, NL was found to significantly increase microbial CUE and decrease microbial metabolic quotient (QCO2), while the opposite was observed with DL. It is noteworthy that NL significantly contributed to an increase in SOC of 30.72 %, while DL had no significant effect on SOC. Correlation analysis showed that CUE was directly proportional to SOC and inversely proportional to QCO2. The partial least squares pathway model indicated that NL indirectly regulated the accumulation of SOC, mainly through two pathways: promoting microbial CUE increase and reducing QCO2. Overall, this study elucidates the mechanism and novel insights regarding SOC accumulation under changes in litter input from the perspective of microbial CUE. These findings are critical for further comprehension of soil carbon dynamics and the terrestrial C-cycle.


Assuntos
Carbono , Microbiologia do Solo , Solo , Carbono/análise , Solo/química , Florestas , Nitrogênio/análise , China , Ciclo do Carbono , Robinia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA