Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
BMC Plant Biol ; 19(1): 591, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881921

RESUMO

BACKGROUND: Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. RESULTS: Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker's yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. CONCLUSIONS: Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.


Assuntos
Hevea/metabolismo , Látex/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hevea/genética , Floema/metabolismo , Casca de Planta/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae , Vacúolos/metabolismo
3.
PLoS One ; 8(9): e75307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066172

RESUMO

Increasing demand for natural rubber prompts studies into the mechanisms governing the productivity of rubber tree (Heveabrasiliensis). It is very interesting to notice that a rubber tree of clone PR107 in Yunnan, China is reported to yield more than 20 times higher than the average rubber tree. This super-high-yielding (SHY) rubber tree (designated as SY107), produced 4.12 kg of latex (cytoplasm of rubber producing laticifers, containing about 30% of rubber) per tapping, more than 7-fold higher than that of the control. This rubber tree is therefore a good material to study how the rubber production is regulated at a molecular aspect. A comprehensive cDNA-AFLP transcript profiling was performed on the latex of SY107 and its average counterparts by using the 384 selective primer pairs for two restriction enzyme combinations (ApoI/MseI and TaqI/MseI). A total of 746 differentially expressed (DE) transcript-derived fragments (TDFs) were identified, of which the expression patterns of 453 TDFs were further confirmed by RT-PCR. These RT-PCR confirmed TDFs represented 352 non-redundant genes, of which 215 had known or partially known functions and were grouped into 10 functional categories. The top three largest categories were transcription and protein synthesis (representing 24.7% of the total genes), defense and stress (15.3%), and primary and secondary metabolism (14.0%). Detailed analysis of the DE-genes suggests notable characteristics of SHY phenotype in improved sucrose loading capability, rubber biosynthesis-preferred sugar utilization, enhanced general metabolism and timely stress alleviation. However, the SHY phenotype has little correlation with rubber-biosynthesis pathway genes.


Assuntos
Hevea/genética , Hevea/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Látex/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Borracha/metabolismo , Transcriptoma
4.
Plant Sci ; 181(2): 132-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683878

RESUMO

Real-time RT-PCR (RT-qPCR) is a sensitive and precise method of quantifying gene expression, however, suitable reference genes are required. Here, a systematic reference gene screening was performed by RT-qPCR on 22 candidate genes in Hevea brasiliensis. Two ubiquitin-protein ligases (UBC2a and UBC4) were the most stable when all samples were analyzed together. A mitosis protein (YLS8) and a eukaryotic translation initiation factor (eIF1Aa) were the most stable in response to tapping. UBC2b and UBC1 were the most stable among different genotypes. UBC2b and a DEAD box RNA helicase (RH2b) were the most stable across individual trees. YLS8 and RH8 were most stably expressed in hormone-treated samples. Expression of the candidate reference genes varied significantly across different tissues, and at least four genes (RH2b, RH8, UBC2a and eIF2) were needed for expression normalization. In addition, examination of relative expression of a sucrose transporter HbSUT3 in different RNA samples demonstrated the importance of additional reference genes to ensure accurate quantitative expression analysis. Overall, our work serves as a guide for selection of reference genes in RT-qPCR gene expression studies in H. brasiliensis.


Assuntos
Genes de Plantas/genética , Hevea/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Transporte Biológico/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sacarose/metabolismo
5.
Plant Cell Environ ; 33(10): 1708-20, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20492551

RESUMO

Efficient sucrose loading in rubber-producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a K(m) value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H(+) symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber-containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue-specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield-stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity.


Assuntos
Hevea/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Borracha/metabolismo , Sacarose/metabolismo , Transporte Biológico , Clonagem Molecular , Expressão Gênica/efeitos dos fármacos , Genes de Plantas , Hevea/genética , Látex/biossíntese , Proteínas de Membrana Transportadoras/genética , Compostos Organofosforados/farmacologia , RNA de Plantas , Saccharomyces cerevisiae/genética
6.
Mol Biotechnol ; 42(1): 91-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19101826

RESUMO

cDNA amplified fragment length polymorphism (cDNA-AFLP) is a powerful transcript-profiling tool widely used in diverse plant species. When applied to a new biological system, however, existing protocols usually require substantial modifications. Furthermore, the usage of radioactive isotope in typical protocols excludes their application in many labs. Latex, as the cytoplasm of rubber-producing cells sees a critical role in elucidating rubber biosynthesis and its regulation in rubber tree (Hevea brasiliensis). This paper describes a detailed step-by-step silver-staining cDNA-AFLP procedure, which is suitable to latex transcript profiling analysis. Theoretical analysis revealed that with the combination of two restriction enzyme pairs (ApoI/MseI and TaqI/MseI), approximately 94% of latex whole transcriptome could be visualized. After varying multiple parameters, including the amounts of primary and secondary template usage, pre-amplification cycle number and gel development, we obtained a high-quality silver-staining fingerprint. In the ApoI/MseI system, an average of 88.6 discernable bands (100-1,000 bp) was produced for each selective primer pair, and 97.2 bands for another system (TaqI/MseI). TaqI/MseI was the first pair of 4-bp cutters used in cDNA-AFLP analysis and proved to be efficient and reliable. The sensitivity and reliability of our method were further verified by an application example in detecting differential gene expression in the latex of Hevea tree.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , DNA Complementar/síntese química , Perfilação da Expressão Gênica/métodos , Hevea/genética , Látex/química , RNA de Plantas/isolamento & purificação , Impressões Digitais de DNA , Enzimas de Restrição do DNA/química , Hevea/química , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Coloração pela Prata
7.
J Biochem Biophys Methods ; 70(5): 749-54, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17490750

RESUMO

Isolating high-quality RNA from latex of H. brasiliensis is a prerequisite to elucidating the molecular mechanisms of rubber biosynthesis and its regulation. Here, an improved protocol was developed for latex collection, transportation, storage, and RNA isolation. Compared with existing ones, our protocol eliminated liquid nitrogen for latex collection and subsequent low-temperature (-70 degrees C) condition for latex storage, making it more convenient and feasible when latex was collected in remote sampling sites, and latex storage and RNA isolation were conducted in poorly-equipped laboratories. Different methods (UV absorbance scans, denaturing gel electrophoresis, autoradiograph monitoring of cDNA synthesis) were used to confirm the high quality of the RNA prepared with this protocol, whose usefulness was further verified by several practical applications, including construction of one high-quality cDNA library, cloning of the full-length cDNAs of 3 novel Hevea sucrose transporter genes, and semi-quantitative RT-PCR analysis of two rubber-biosynthesis essential genes and one sucrose transporter gene.


Assuntos
Hevea/química , Látex/química , RNA de Plantas/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , DNA de Plantas/genética , Eletroforese em Gel de Ágar , Biblioteca Gênica , Genes de Plantas , Hevea/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA