Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2018: 2493869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681946

RESUMO

Cervical cancer is the second most frequent tumor type in women worldwide with cases developing clinical recurrence, metastasis, and chemoresistance. The cancer stem cells (CSC) may be implicated in tumor resistance to therapy. RESveratrol (RES), a natural compound, is an antioxidant with multiple beneficial activities. We previously determined that the expression of RAD51 is decreased by RES. The aim of our study was to examine molecular mechanism by which CSC from HeLa cultures exhibit chemoresistance. We hypothesized CSC repair more efficiently DNA breaks and that RAD51 plays an important role in this mechanism. We found that CSC, derived from cervical cancer cell lines, overexpress RAD51 and are less sensitive to Etoposide (VP16). We inhibited RAD51 in CSC-enriched cultures using RES or siRNA against RAD51 messenger RNA and observed a decrease in cell viability and induction of apoptosis when treated simultaneously with VP16. In addition, we found that inhibition of RAD51 expression using RES also sensitizes CSC to VP16 treatment. Our results suggest that resveratrol is effective to sensitize cervical CSC because of RAD51 inhibition, targeting high RAD51 expressing CD49f-positive cells, which supports the possible therapeutic application of RES as a novel agent to treat cancer.

2.
Eur J Cancer Prev ; 22(1): 11-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22644231

RESUMO

To gain insights into the antitumor mechanisms of resveratrol (RES), we carried out a DNA microarray analysis in the breast cancer cell line MCF-7 to study the global gene expression profile induced by RES treatment. The mRNA expression level of 19 734 well-characterized human genes from MCF-7 cells was determined using Affymetrix microarrays under two different RES treatments: 150 µmol/l (IC(50)) and 250 µmol/l during 48 h. A total of 1211 genes were found to have altered mRNA expression levels of two-fold or more in the 150 µmol/l RES-treated group (518 upregulated and 693 downregulated genes). However, 2412 genes were found to have altered expression levels of two-fold or more in the 250 µmol/l RES-treated group (651 genes upregulated and 1761 downregulated). Under both conditions of RES treatment, several genes of mismatch repair, DNA replication, homologous recombination (HR), and cell cycle were strongly inhibited. Consistently, we found decreased protein levels of the MRN complex (MRE11-NBS1-RAD50), an important complex of the HR DNA repair pathway. The ability to inhibit the expression of DNA repair genes by RES could help to overcome drug resistance commonly shown by transformed cells and to provide a solid basis for carrying out clinical trials with RES, alone or in combination with other agents, to enhance treatment efficacy, reduce toxicity, and overcome chemoresistance. Remarkably, after RES treatment, we found a decrease in NBS1 and MRE11 protein levels, two major proteins involved in HR, which suggests that RES could be used to sensitize cancer cells to cell death in combination with anticancer drugs.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Regulação para Baixo/efeitos dos fármacos , Estilbenos/farmacologia , Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/fisiologia , Feminino , Humanos , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA