RESUMO
With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for cumulative physiological strain imposed by extended work hours when working heavily under high heat stress, the current WBGT standards do not include this. Advanced thermophysiological models might help developing alternatives, where not only modelling details but also the choice of physiological limit criteria will require attention. There is also an urgent need for suitable empirical data relating workplace heat exposure to workability.
Assuntos
Eficiência , Transtornos de Estresse por Calor , Temperatura Alta/efeitos adversos , Doenças Profissionais , Exposição Ocupacional , Cidades , Humanos , Índia , Japão , Modelos Teóricos , Nicarágua , Texas , Carga de Trabalho , Local de TrabalhoRESUMO
While climate change continues to increase ambient temperatures, the resulting heat stress exposure to workers in non-climate controlled settings is not well characterized, particularly in low and middle income countries. This preliminary report describes current heat stress in Nicaraguan work places and estimates occupational heat stress in 2050. From over 400 measurements of heat exposure using wet bulb globe temperature, more than 10% of all measurements exceeded the safety threshold for the combination of light work and rest at the ratio of 25:75. By 2050, that percentage of "over-heated" days is projected to increase to over 15%. These findings support the idea that common working conditions in Nicaragua already represent a threat to the health and safety of the workers and that climate change driven trends could mean either a necessary curbing of economic productivity or an increased threat to worker health and safety.