Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 11: 599165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324349

RESUMO

ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Hiperinsulinismo/prevenção & controle , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Homeostase , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edulcorantes/farmacologia
2.
Br J Nutr ; 121(12): 1334-1344, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924427

RESUMO

Reduced plasma vitamin D (VD) levels may contribute to excessive white adipose tissue, insulin resistance (IR) and dyslipidaemia. We evaluated the effect of chronic oral VD supplementation on adiposity and insulin secretion in monosodium glutamate (MSG)-treated rats. During their first 5 d of life, male neonate rats received subcutaneous injections of MSG (4 g/kg), while the control (CON) group received saline solution. After weaning, groups were randomly distributed into VD supplemented (12 µg/kg; three times/week) and non-supplemented (NS) rats, forming four experimental groups (n 15 rats/group): CON-NS, CON-VD, MSG-NS and MSG-VD. At 76 d of life, rats were submitted to an oral glucose tolerance test (OGTT; 2 g/kg), and at 86 d, obesity, IR and plasma metabolic parameters were evaluated. Pancreatic islets were isolated for glucose-induced insulin secretion (GIIS), cholinergic insulinotropic response and muscarinic 3 receptor (M3R), protein kinase C (PKC) and protein kinase A (PKA) expressions. Pancreas was submitted to histological analyses. VD supplementation decreased hyperinsulinaemia (86 %), hypertriacylglycerolaemia (50 %) and restored insulin sensibility (89 %) in MSG-VD rats, without modifying adiposity, OGTT or GIIS, compared with the MSG-NS group. The cholinergic action was reduced (57 %) in islets from MSG-VD rats, without any change in M3R, PKA or PKC expression. In conclusion, chronic oral VD supplementation of MSG-obese rats was able to prevent hyperinsulinaemia and IR, improving triacylglycerolaemia without modifying adiposity. A reduced cholinergic pancreatic effect, in response to VD, could be involved in the normalisation of plasma insulin levels, an event that appears to be independent of M3R and its downstream pathways.


Assuntos
Adiposidade/efeitos dos fármacos , Suplementos Nutricionais , Secreção de Insulina/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Hipotálamo/metabolismo , Ratos
3.
Amino Acids ; 50(3-4): 469-477, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29282544

RESUMO

Low levels of estrogens are associated with obesity-related comorbidities. Mice with lower levels of estrogens are thereby more sensitive to the effects of a high-fat-diet (HFD) for the development of glucose intolerance and insulin resistance. Studies in vivo have demonstrated that taurine (TAU) supplementation prevents glucose and insulin resistance. Thus, we aimed to investigate the potential beneficial effects of TAU supplementation on glucose homeostasis of mice with low levels of estrogens fed with a HFD. 3-month-old female C57BL/6J mice underwent bilateral ovariectomy (OVX). After 1 week of recovery, mice were divided into 4 groups and either received: a standard chow diet (OVXC), chow diet plus drinking water enriched with 3% of TAU (OVXCT), HFD (OVXH), and HFD plus supplementation of TAU (OVXHT) for 14 weeks. Exposure to the HFD increased adiposity and plasma levels of glucose and insulin. Contrary to our prediction, the addition of TAU enhanced the deleterious effects of the HFD. Glucose and insulin tolerance tests (ipGTT and ipITT) indicated that mice maintained on the HFD + TAU had worse glucose intolerance and insulin resistance that was linked to lower insulin signaling in skeletal muscle and liver. Insulin secretion of isolated pancreatic islets of OVXH mice was higher than OVXC, and the addition of TAU associated with a HFD did not modulate insulin secretion, suggesting a failure of pancreatic ß cells of OVXHT mice. These results suggest that despite the beneficial reports of TAU, it should be used cautiously in situations where the levels of estrogens are low.


Assuntos
Suplementos Nutricionais , Glucose/metabolismo , Obesidade/tratamento farmacológico , Taurina/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Estrogênios/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Ovariectomia
4.
Pharm Biol ; 54(7): 1263-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26194070

RESUMO

CONTEXT: Obesity is the main risk factor for type 2 diabetes mellitus. Secondary metabolites with biological activities and pharmacological potential have been identified in species of the Baccharis genus that are specifically distributed in the Americas. OBJECTIVE: This study evaluated the effects of methanol extracts from Baccharis dracunculifolia DC. Asteraceae on metabolic parameters, satiety, and growth in monosodium glutamate (MSG) induced-obesity model rats. MATERIALS AND METHODS: MSG was administered to 32 newborn rats (4 mg/g of body weight) once daily for 5 consecutive days. Four experimental groups (control, control + extract, MSG, and MSG + extract) were treated for 30 consecutive days with 400 mg/kg of B. dracunculifolia extract by gavage. Biochemical parameters, antioxidant activity, total extract phenolic content (methanolic, ethanolic, and acetone extractions), and pancreatic islets were evaluated. RESULTS: High levels of phenolic compounds were identified in B. dracunculifolia extracts (methanol: 46.2 ± 0.4 mg GAE/L; acetate: 70.5 ± 0.5 mg GAE/L; and ethanol: 30.3 ± 0.21 mg GAE/L); high antioxidant activity was detected in B. dracunculifolia ethanol and methanol extracts. The concentration of serum insulin increased 30% in obese animals treated with extract solutions (1.4-2.0 µU/mL, p < 0.05). Insulin secretion in pancreatic islets was 8.3 mM glucose (58%, p < 0.05) and 16.7 mM (99.5%, p < 0.05) in rats in the MSG + extract and MSG groups, respectively. DISCUSSION AND CONCLUSION: Treatment with B. dracunculifolia extracts protected pancreatic islets and prevented the irreversible cellular damage observed in animals in obesity and diabetes models.


Assuntos
Fármacos Antiobesidade/farmacologia , Baccharis , Glicemia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Metanol/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Glutamato de Sódio , Solventes/química , Animais , Animais Recém-Nascidos , Fármacos Antiobesidade/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Baccharis/química , Glicemia/metabolismo , Modelos Animais de Doenças , Hipoglicemiantes/isolamento & purificação , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/fisiopatologia , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos Wistar , Fatores de Tempo
5.
FASEB J ; 29(5): 1805-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609426

RESUMO

Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic ß cells. Exercise training enhances ß-cell mass in T1D. Here, we investigated how exercise signals ß cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1ß plus IFN-γ). Islets from control mice and ß-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-ß-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and ß cells were exposed to IL-1ß plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1ß plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced ß-cell death, induced by IL-1ß plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals ß-cell survival in T1D through IL-6.


Assuntos
Apoptose , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Interleucina-6/fisiologia , Ilhotas Pancreáticas/patologia , Músculo Esquelético/patologia , Condicionamento Físico Animal , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA