Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0289018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922287

RESUMO

Our working hypothesis was that magnesium (Mg) supplementation modulates plant performance under low water availability and improves drought tolerance in soybean genotypes. Plants of Bônus 8579, M8808 and TMG1180 genotypes were grown under field conditions and subjected to three water stress treatments (control, moderate and severe stress) and three Mg levels [0.9 (low), 1.3 (adequate) and 1.7 cmolc dm-³ (supplementation)]. After 28 days of drought imposition, the growth parameters, osmotic potential, relative water content, leaf succulence, Mg content and photosynthetic pigments were assessed. In general, drought drastically decreased the growth in all genotypes, and the reductions were intensified from moderate to severe stress. Under adequate Mg supply, TMG1180 was the most drought-tolerant genotype among the soybean plants, but Mg supplementation did not improve its tolerance. Conversely, although the M8808 genotype displayed inexpressive responses to drought under adequate Mg, the Mg-supplemented plants were found to have surprisingly better growth performance under stress compared to Bônus 8579 and TMG1180, irrespective of drought regime. The improved growth of high Mg-treated M8808-stressed plants correlated with low osmotic potential and increased relative water content, as well as shoot Mg accumulation, resulting in increased photosynthetic pigments and culminating in the highest drought tolerance. The results clearly indicate that Mg supplementation is a potential tool for alleviating water stress in M8808 soybean plants. Our findings suggest that the enhanced Mg-induced plant acclimation resulted from increased water content in plant tissues and strategic regulation of Mg content and photosynthetic pigments.


Assuntos
Glycine max , Magnésio , Desidratação , Secas , Suplementos Nutricionais
2.
Sci Rep ; 13(1): 16040, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749306

RESUMO

Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.


Assuntos
Saccharum , Silício , Grão Comestível , Carbono , Carboidratos da Dieta , Fósforo , Solo , Fertilização
3.
PLoS One ; 17(10): e0274726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223386

RESUMO

Genotype × environment (G×E) interaction is an important source of variation in soybean yield, which can significantly influence selection in breeding programs. This study aimed to select superior soybean genotypes for performance and yield stability, from data from multi-environment trials (METs), through GGE biplot analysis that combines the main effects of the genotype (G) plus the genotype-by-environment (G×E) interaction. As well as, through path analysis, determine the direct and indirect influences of yield components on soybean grain yield, as a genotype selection strategy. Eight soybean genotypes from the breeding program of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) were evaluated in field trials using a randomized block experimental design, in an 8 x 8 factorial scheme with four replications in eight different environments of the Cerrado of Northeastern Brazil during two crop seasons. Phenotypic performance data were measured for the number of days to flowering (NDF), height of first pod insertion (HPI), final plant height (FPH), number of days to maturity (NDM), mass of 100 grains (M100) and grain yield (GY). The results revealed that the variance due to genotype, environment, and G×E interaction was highly significant (P < 0.001) for all traits. The ST820RR, BRS 333RR, BRS SambaíbaRR, M9144RR and M9056RR genotypes exhibited the greatest GY stability in the environments studied. However, only the BRS 333RR genotype, followed by the M9144RR, was able to combine good productive performance with high yield stability. The study also revealed that the HPI and the NDM are traits that should be prioritized in the selection of soybean genotypes due to the direct and indirect effects on the GY.


Assuntos
Glycine max , Melhoramento Vegetal , Grão Comestível/genética , Genótipo , Fenótipo , Melhoramento Vegetal/métodos , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA