Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Lancet Reg Health Am ; 33: 100731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38800645

RESUMO

Background: Liver disease is a major cause of mortality and morbidity worldwide and its epidemiology depends on the genetic background, exposure to risk factors, access to healthcare and other sociodemographic characteristics. Brazil is a large country with diverse multicultural and ethnic heritages and important socioeconomic inequalities. The burden of liver disease in Brazil, its regions and population is unknown. Methods: We retrieved data from the Unified Health System regarding liver diseases and analyzed the mortality and morbidity from 1996 to 2022 by gender, race/ethnicity, age, region and overall. We calculated the age-specific risk of deaths by liver disease, age-standardization of the data, mean hospitalization and liver transplant-associated costs. Findings: Malignant neoplasm of the liver and intrahepatic bile ducts, alcohol-associated liver disease, fibrosis, and cirrhosis of the liver, other diseases of the liver, hepatic failure, chronic viral hepatitis were identified as the major causes of death and morbidity in Brazil in the period analyzed. The epidemiology of these diseases was diverse, with variations according to geographic regions, gender and race/ethnicity. The major economic burden of liver disease is related to liver transplants, a common outcome of the progression of these diseases. Interpretation: Liver disease in Brazil is a serious issue for the public health system due to the high number of deaths and increasing mortality rate. Our study contributes as a necessary prerequisite for the development of tailored public health policies aimed at mitigating the increasing burden of liver diseases in specific populations and regions. Funding: CNPq, INCT, CAPES, FAPEMIG.

3.
Pharmaceutics ; 15(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376150

RESUMO

Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities. Therefore, this study reports for the first time the design, synthesis, and extensive characterization of innovative colloidal nanostructures made of cobalt-doped iron oxide nanoparticles chemically stabilized by a carboxymethylcellulose capping ligand (i.e., Co-MION), creating a peroxidase-like (POD) nanozyme for biocatalytically killing GBM cancer cells. These nanoconjugates were produced using a strictly green aqueous process under mild conditions to create non-toxic bioengineered nanotherapeutics against GBM cells. The nanozyme (Co-MION) showed a magnetite inorganic crystalline core with a uniform spherical morphology (diameter, 2R = 6-7 nm) stabilized by the CMC biopolymer, producing a hydrodynamic diameter (HD) of 41-52 nm and a negatively charged surface (ZP~-50 mV). Thus, we created supramolecular water-dispersible colloidal nanostructures composed of an inorganic core (Cox-MION) and a surrounding biopolymer shell (CMC). The nanozymes confirmed the cytotoxicity evaluated by an MTT bioassay using a 2D culture in vitro of U87 brain cancer cells, which was concentration-dependent and boosted by increasing the cobalt-doping content in the nanosystems. Additionally, the results confirmed that the lethality of U87 brain cancer cells was predominantly caused by the production of toxic cell-damaging reactive oxygen species (ROS) through the in situ generation of hydroxyl radicals (·OH) by the peroxidase-like activity displayed by nanozymes. Thus, the nanozymes induced apoptosis (i.e., programmed cell death) and ferroptosis (i.e., lipid peroxidation) pathways by intracellular biocatalytic enzyme-like activity. More importantly, based on the 3D spheroids model, these nanozymes inhibited tumor growth and remarkably reduced the malignant tumor volume after the nanotherapeutic treatment (ΔV~40%). The kinetics of the anticancer activity of these novel nanotherapeutic agents decreased with the time of incubation of the GBM 3D models, indicating a similar trend commonly observed in tumor microenvironments (TMEs). Furthermore, the results demonstrated that the 2D in vitro model overestimated the relative efficiency of the anticancer agents (i.e., nanozymes and the DOX drug) compared to the 3D spheroid models. These findings are notable as they evidenced that the 3D spheroid model resembles more precisely the TME of "real" brain cancer tumors in patients than 2D cell cultures. Thus, based on our groundwork, 3D tumor spheroid models might be able to offer transitional systems between conventional 2D cell cultures and complex biological in vivo models for evaluating anticancer agents more precisely. These nanotherapeutics offer a wide avenue of opportunities to develop innovative nanomedicines for fighting against cancerous tumors and reducing the frequency of severe side effects in conventionally applied chemotherapy-based treatments.

4.
Front Physiol ; 13: 1080837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601349

RESUMO

Patients infected by the SARS-CoV-2 virus are commonly diagnosed with threatening liver conditions associated with drug-induced therapies and systemic viral action. RNA-Seq data from cells in bronchoalveolar lavage fluid from COVID-19 patients have pointed out dysregulation of kallikrein-kinin and renin-angiotensin systems as a possible mechanism that triggers multi-organ damage away from the leading site of virus infection. Therefore, we measured the plasma concentration of biologically active peptides from the kallikrein-kinin system, bradykinin and des-Arg9-bradykinin, and liver expression of its proinflammatory axis, bradykinin 1 receptor (B1R). We measured the plasma concentration of bradykinin and des-Arg9-bradykinin of 20 virologically confirmed COVID-19 patients using a liquid chromatography-tandem mass spectrometry-based methodology. The expression of B1R was evaluated by immunohistochemistry from post-mortem liver specimens of 27 COVID-19 individuals. We found a significantly higher blood level of des-Arg9-bradykinin and a lower bradykinin concentration in patients with COVID-19 compared to a healthy, uninfected control group. We also observed increased B1R expression levels in hepatic tissues of patients with COVID-19 under all hepatic injuries analyzed (liver congestion, portal vein dilation, steatosis, and ischemic necrosis). Our data indicate that des-Arg9-bradykinin/B1R is associated with the acute hepatic dysfunction induced by the SARS-CoV-2 virus infection in the pathogenesis of COVID-19.

5.
Oncol Lett ; 23(1): 32, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34966448

RESUMO

The expression of the inositol 1,4,5-trisphosphate receptor type 3 (ITRP3) in hepatocytes is a common event in the pathogenesis of hepatocellular carcinoma (HCC), regardless of the type of underlying liver disease. However, it is not known whether ITPR3 expression in hepatocytes is involved in tumor maintenance. The aim of the present study was to determine whether there is an association between ITPR3 expression and clinical and morphological parameters using HCC samples obtained from liver explants from patients (n=53) with different etiologies of underlying chronic liver disease (CLD). ITPR3 expression, mitosis and apoptosis were analyzed in human liver samples by immunohistochemistry. Clinical and event-free survival data were combined to assess the relationship between ITPR3 and liver cancer growth in patients. RNA sequencing analysis was performed to identify apoptotic genes altered by ITPR3 expression in a liver tumor cell line. ITPR3 was highly expressed in HCC tumor cells relative to adjacent CLD tissue and healthy livers. There was an inverse correlation between ITPR3 expression and mitotic and apoptotic indices in HCC, suggesting that ITPR3 contributed to the maintenance of HCC by promoting resistance to apoptosis. This was confirmed by the upregulation of CTSB, CHOP and GADD45, genes involved in the apoptotic pathway in HCC. The expression of ITPR3 in the liver may be a promising prognostic marker of HCC.

6.
Hepatol Commun ; 6(2): 270-280, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34520633

RESUMO

Liver test abnormalities are frequently observed in patients with coronavirus disease 2019 (COVID-19) and are associated with worse prognosis. However, information is limited about pathological changes in the liver in this infection, so the mechanism of liver injury is unclear. Here we describe liver histopathology and clinical correlates of 27 patients who died of COVID-19 in Manaus, Brazil. There was a high prevalence of liver injury (elevated alanine aminotransferase and aspartate aminotransferase in 44% and 48% of patients, respectively) in these patients. Histological analysis showed sinusoidal congestion and ischemic necrosis in more than 85% of the cases, but these appeared to be secondary to systemic rather than intrahepatic thrombotic events, as only 14% and 22% of samples were positive for CD61 (marker of platelet activation) and C4d (activated complement factor), respectively. Furthermore, the extent of these vascular findings did not correlate with the extent of transaminase elevations. Steatosis was present in 63% of patients, and portal inflammation was present in 52%. In most cases, hepatocytes expressed angiotensin-converting enzyme 2 (ACE2), which is responsible for binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), even though this ectoenzyme was minimally expressed on hepatocytes in normal controls. However, SARS-CoV-2 staining was not observed. Most hepatocytes also expressed inositol 1,4,5-triphosphate receptor 3 (ITPR3), a calcium channel that becomes expressed in acute liver injury. Conclusion: The hepatocellular injury that commonly occurs in patients with severe COVID-19 is not due to the vascular events that contribute to pulmonary or cardiac damage. However, new expression of ACE2 and ITPR3 with concomitant inflammation and steatosis suggests that liver injury may result from inflammation, metabolic abnormalities, and perhaps direct viral injury.


Assuntos
COVID-19/complicações , Hepatopatias/patologia , Hepatopatias/virologia , Fígado/patologia , Fígado/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , COVID-19/mortalidade , COVID-19/patologia , COVID-19/fisiopatologia , Feminino , Humanos , Fígado/fisiopatologia , Hepatopatias/diagnóstico , Hepatopatias/fisiopatologia , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade
8.
Inflamm Res ; 69(10): 1059-1070, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32632517

RESUMO

OBJECTIVE: This study aims to investigate the role of protease-activated receptor (PAR) 2 and mast cell (MC) tryptase in LPS-induced lung inflammation and neutrophil recruitment in the lungs of C57BL/6 mice. METHODS: C57BL/6 mice were pretreated with the PAR2 antagonist ENMD-1068, compound 48/80 or aprotinin prior to intranasal instillation of MC tryptase or LPS. Blood leukocytes, C-X-C motif chemokine ligand (CXCL) 1 production leukocytes recovered from bronchoalveolar lavage fluid (BALF), and histopathological analysis of the lung were evaluated 4 h later. Furthermore, we performed experiments to determine intracellular calcium signaling in RAW 264.7 cells stimulated with LPS in the presence or absence of a protease inhibitor cocktail or ENMD-1068 and evaluated PAR2 expression in the lungs of LPS-treated mice. RESULTS: Pharmacological blockade of PAR2 or inhibition of proteases reduced neutrophils recovered in BALF and LPS-induced calcium signaling. PAR2 blockade impaired LPS-induced lung inflammation, PAR2 expression in the lung and CXCL1 release in BALF, and increased circulating blood neutrophils. Intranasal instillation of MC tryptase increased the number of neutrophils recovered in BALF, and MC depletion with compound 48/80 impaired LPS-induced neutrophil migration. CONCLUSION: Our study provides, for the first time, evidence of a pivotal role for MCs and MC tryptase in neutrophil migration, lung inflammation and macrophage activation triggered by LPS, by a mechanism dependent on PAR2 activation.


Assuntos
Mastócitos/imunologia , Infiltração de Neutrófilos , Pneumonia/imunologia , Receptor PAR-2/imunologia , Triptases/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Sinalização do Cálcio , Quimiocina CXCL1/imunologia , Feminino , Lipopolissacarídeos , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Células RAW 264.7 , Receptor PAR-2/antagonistas & inibidores
9.
World J Gastroenterol ; 25(44): 6483-6494, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31802829

RESUMO

The liver is a complex organ that performs several functions to maintain homeostasis. These functions are modulated by calcium, a second messenger that regulates several intracellular events. In hepatocytes and cholangiocytes, which are the epithelial cell types in the liver, inositol 1,4,5-trisphosphate (InsP3) receptors (ITPR) are the only intracellular calcium release channels. Three isoforms of the ITPR have been described, named type 1, type 2 and type 3. These ITPR isoforms are differentially expressed in liver cells where they regulate distinct physiological functions. Changes in the expression level of these receptors correlate with several liver diseases and hepatic dysfunctions. In this review, we highlight how the expression level, modulation, and localization of ITPR isoforms in hepatocytes and cholangiocytes play a role in hepatic homeostasis and liver pathology.


Assuntos
Ductos Biliares Intra-Hepáticos/metabolismo , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Hepatopatias/patologia , Fígado/metabolismo , Animais , Ductos Biliares Intra-Hepáticos/citologia , Cálcio/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/patologia , Isoformas de Proteínas/metabolismo
10.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340446

RESUMO

Alcoholic liver disease (ALD) is a highly prevalent spectrum of pathologies caused by alcohol overconsumption. Morbidity and mortality related to ALD are increasing worldwide, thereby demanding strategies for early diagnosis and detection of ALD predisposition. A potential candidate as a marker for ALD susceptibility is the transcription factor nuclear factor erythroid-related factor 2 (Nrf2), codified by the nuclear factor erythroid 2-related factor 2 gene (NFE2L2). Nrf2 regulates expression of proteins that protect against oxidative stress and inflammation caused by alcohol overconsumption. Here, we assessed genetic variants of NFE2L2 for association with ALD. Specimens from patients diagnosed with cirrhosis caused by ALD were genotyped for three NFE2L2 single nucleotide polymorphisms (SNP) (SNPs: rs35652124, rs4893819, and rs6721961). Hematoxylin & eosin and immunohistochemistry were performed to determine the inflammatory score and Nrf2 expression, respectively. SNPs rs4893819 and rs6721961 were not specifically associated with ALD, but analysis of SNP rs35652124 suggested that this polymorphism predisposes to ALD. Furthermore, SNP rs35652124 was associated with a lower level of Nrf2 expression. Moreover, liver samples from ALD patients with this polymorphism displayed more severe inflammatory activity. Together, these findings provide evidence that the SNP rs35652124 variation in the Nrf2-encoding gene NFE2L2 is a potential genetic marker for susceptibility to ALD.


Assuntos
Predisposição Genética para Doença , Cirrose Hepática Alcoólica/genética , Fator 2 Relacionado a NF-E2/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adulto , Estudos de Casos e Controles , Etanol/farmacologia , Feminino , Expressão Gênica , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/patogenicidade , Hepatite C/patologia , Hepatite C/virologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Cirrose Hepática Alcoólica/cirurgia , Transplante de Fígado , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo
11.
Hepatology ; 69(2): 817-830, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30141207

RESUMO

Clinical conditions that result in endotoxemia, such as sepsis and alcoholic hepatitis (AH), often are accompanied by cholestasis. Although hepatocellular changes in response to lipopolysaccharide (LPS) have been well characterized, less is known about whether and how cholangiocytes contribute to this form of cholestasis. We examined effects of endotoxin on expression and function of the type 3 inositol trisphosphate receptor (ITPR3), because this is the main intracellular Ca2+ release channel in cholangiocytes, and loss of it impairs ductular bicarbonate secretion. Bile duct cells expressed the LPS receptor, Toll-like receptor 4 (TLR4), which links to activation of nuclear factor-κB (NF-κB). Analysis of the human ITPR3 promoter revealed five putative response elements to NF-κB, and promoter activity was inhibited by p65/p50. Nested 0.5- and 1.0-kilobase (kb) deletion fragments of the ITPR3 promoter were inhibited by NF-κB subunits. Chromatin immunoprecipitation (ChIP) assay showed that NF-κB interacts with the ITPR3 promoter, with an associated increase in H3K9 methylation. LPS decreased ITPR3 mRNA and protein expression and also decreased sensitivity of bile duct cells to calcium agonist stimuli. This reduction was reversed by inhibition of TLR4. ITPR3 expression was decreased or absent in cholangiocytes from patients with cholestasis of sepsis and from those with severe AH. Conclusion: Stimulation of TLR4 by LPS activates NF-κB to down-regulate ITPR3 expression in human cholangiocytes. This may contribute to the cholestasis that can be observed in conditions such as sepsis or AH.


Assuntos
Ductos Biliares/efeitos dos fármacos , Ductos Biliares/metabolismo , Endotoxemia/metabolismo , Endotoxinas/toxicidade , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Adulto , Sinalização do Cálcio/efeitos dos fármacos , Colestase/etiologia , Colestase/metabolismo , Endotoxemia/complicações , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatite Alcoólica/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo
12.
Sci Rep ; 8(1): 14739, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282983

RESUMO

Scorpion sting envenoming impacts millions of people worldwide, with cardiac effects being one of the main causes of death on victims. Here we describe the first Ca2+ channel toxin present in Tityus serrulatus (Ts) venom, a cell penetrating peptide (CPP) named CPP-Ts. We show that CPP-Ts increases intracellular Ca2+ release through the activation of nuclear InsP3R of cardiomyocytes, thereby causing an increase in the contraction frequency of these cells. Besides proposing a novel subfamily of Ca2+ active toxins, we investigated its potential use as a drug delivery system targeting cancer cell nucleus using CPP-Ts's nuclear-targeting property. To this end, we prepared a synthetic CPP-Ts sub peptide14-39 lacking pharmacological activity which was directed to the nucleus of specific cancer cell lines. This research identifies a novel subfamily of Ca2+ active toxins and provides new insights into biotechnological applications of animal venoms.


Assuntos
Cálcio/química , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Sequência de Aminoácidos/genética , Animais , Canais de Cálcio , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Citoplasma/efeitos dos fármacos , Humanos , Venenos de Escorpião/química , Escorpiões/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-29866873

RESUMO

Progress toward the improvement of meglumine antimoniate (MA), commercially known as Glucantime, a highly effective but also toxic antileishmanial drug, has been hindered by the lack of knowledge and control of its chemical composition. Here, MA was manipulated chemically with the aim of achieving an orally effective drug. MA compounds were synthesized from either antimony pentachloride (MA-SbCl5) or potassium hexahydroxyantimonate [MA-KSb(OH)6] and prepared under a low polymerization state. These compounds were compared to Glucantime regarding chemical composition, permeation properties across a cellulose membrane and Caco-2 cell monolayer, and uptake by peritoneal macrophages. MA-SbCl5 and MA-KSb(OH)6 were characterized as less polymerized and more permeative 2:2 Sb-meglumine complexes than Glucantime, which consisted of a mixture of 2:3 and 3:3 Sb-meglumine complexes. The antileishmanial activities and hepatic uptake of all compounds were evaluated after oral administration in BALB/c mice infected with Leishmania infantum chagasi, as a model of visceral leishmaniasis (VL). The synthetic MA compounds given at 300 mg Sb/kg of body weight/12 h for 30 days significantly reduced spleen and liver parasite burdens, in contrast to those for Glucantime at the same dose. The greater activity of synthetic compounds could be attributed to their higher intestinal absorption and accumulation efficiency in the liver. MA-SbCl5 given orally was as efficacious as Glucantime by the parenteral route (80 mg Sb/kg/24 h intraperitoneally). These data taken together suggest that treatment with a less-polymerized form of MA by the oral route may be effective for the treatment of VL.


Assuntos
Leishmaniose Visceral/tratamento farmacológico , Antimoniato de Meglumina/uso terapêutico , Administração Oral , Animais , Células CACO-2 , Modelos Animais de Doenças , Feminino , Humanos , Antimoniato de Meglumina/administração & dosagem , Antimoniato de Meglumina/química , Camundongos , Camundongos Endogâmicos BALB C , Polimerização
14.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G80-G94, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471671

RESUMO

Hepatocyte proliferation during liver regeneration is a well-coordinated process regulated by the activation of several growth factor receptors, including the insulin receptor (IR). The IR can be localized in part to cholesterol-enriched membrane microdomains, but the role of such domains in insulin-mediated events in hepatocytes is not known. We investigated whether partitioning of IRs into cholesterol-enriched membrane rafts is important for the mitogenic effects of insulin in the hepatic cells. IR and lipid rafts were labeled in HepG2 cells and primary rat hepatocytes. Membrane cholesterol was depleted in vitro with metyl-ß-cyclodextrin (MßCD) and in vivo with lovastatin. Insulin-induced calcium (Ca2+) signals studies were examined in HepG2 cells and in freshly isolated rat hepatocytes as well as in whole liver in vivo by intravital confocal imaging. Liver regeneration was studied by 70% partial hepatectomy (PH), and hepatocyte proliferation was assessed by PCNA staining. A subpopulation of IR was found in membrane microdomains enriched in cholesterol. Depletion of cholesterol from plasma membrane resulted in redistribution of the IR along the cells, which was associated with impaired insulin-induced nuclear Ca2+ signals, a signaling event that regulates hepatocyte proliferation. Cholesterol depletion also led to ERK1/2 hyper-phosphorylation. Lovastatin administration to rats decreased hepatic cholesterol content, disrupted lipid rafts and decreased insulin-induced Ca2+ signaling in hepatocytes, and delayed liver regeneration after PH. Therefore, membrane cholesterol content and lipid rafts integrity showed to be important for the proliferative effects of insulin in hepatic cells. NEW & NOTEWORTHY One of insulin's actions is to stimulate liver regeneration. Here we show that a subpopulation of insulin receptors is in a specialized cholesterol-enriched region of the cell membrane and this subfraction is important for insulin's proliferative effects.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Regeneração Hepática/fisiologia , Microdomínios da Membrana/fisiologia , Receptor de Insulina/metabolismo , Animais , Proliferação de Células/fisiologia , Ratos , Transdução de Sinais/fisiologia
15.
PLoS One ; 12(4): e0175041, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28376104

RESUMO

Increases in nuclear calcium concentration generate specific biological outcomes that differ from those resulting from increased cytoplasmic calcium. Nuclear calcium effects on tumor cell proliferation are widely appreciated; nevertheless, its involvement in other steps of tumor progression is not well understood. Therefore, we evaluated whether nuclear calcium is essential in other additional stages of tumor progression, including key steps associated with the formation of the primary tumor or with the metastatic cascade. We found that nuclear calcium buffering impaired 4T1 triple negative breast cancer growth not just by decreasing tumor cell proliferation, but also by enhancing tumor necrosis. Moreover, nuclear calcium regulates tumor angiogenesis through a mechanism that involves the upregulation of the anti-angiogenic C-X-C motif chemokine 10 (CXCL10-IP10). In addition, nuclear calcium buffering regulates breast tumor cell motility, culminating in less cell invasion, likely due to enhanced vinculin expression, a focal adhesion structural protein. Together, our results show that nuclear calcium is essential for triple breast cancer angiogenesis and cell migration and can be considered as a promising strategic target for triple negative breast cancer therapy.


Assuntos
Sinalização do Cálcio , Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Quimiocina CXCL10/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/patologia
16.
Cell Commun Signal ; 14: 3, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26759054

RESUMO

Since it was discovered, the citric acid cycle has been known to be central to cell metabolism and energy homeostasis. Mainly found in the mitochondrial matrix, some of the intermediates of the Krebs cycle are also present in the blood stream. Currently, there are several reports that indicate functional roles for Krebs intermediates out of its cycle. Succinate, for instance, acts as an extracellular ligand by binding to a G-protein coupled receptor, known as GPR91, expressed in kidney, liver, heart, retinal cells and possibly many other tissues, leading to a wide array of physiological and pathological effects. Through GPR91, succinate is involved in functions such as regulation of blood pressure, inhibition of lipolysis in white adipose tissue, development of retinal vascularization, cardiac hypertrophy and activation of stellate hepatic cells by ischemic hepatocytes. Along the current review, these new effects of succinate through GPR91 will be explored and discussed.


Assuntos
Ciclo do Ácido Cítrico , Receptores Acoplados a Proteínas G/metabolismo , Animais , Pressão Sanguínea , Expressão Gênica , Humanos , Fígado/metabolismo , Modelos Moleculares , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética , Retina/metabolismo , Transdução de Sinais , Ácido Succínico/metabolismo
17.
Hepatology ; 61(1): 348-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24824608

RESUMO

UNLABELLED: Drug-induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self-DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA-rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll-like receptor 9 (TLR9)-mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up-regulated TLR9 expression during acetaminophen-mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF-κB pathway. Likewise, adoptive transfer of wild-type neutrophils to TLR9(-/-) mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. CONCLUSION: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , DNA/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Animais , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptor Toll-Like 9/metabolismo
18.
Liver Int ; 35(4): 1162-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24814243

RESUMO

BACKGROUND & AIMS: Liver regeneration is a multistage process that unfolds gradually, with different mediators acting at different stages of regeneration. Calcium (Ca(2+) ) signalling is essential for liver regeneration. In hepatocytes, Ca(2+) signalling results from the activation of inositol 1,4,5-trisphosphate receptors (InsP3 R) of which two of the three known isoforms are expressed (InsP3 R-I and InsP3 R-II). Here, we investigated the role of the InsP3 R-I-dependent Ca(2+) signals in hepatic proliferation during liver regeneration. METHODS: Partial hepatectomy (HX) in combination with knockdown of InsP3 R-I (AdsiRNA-I) was used to evaluate the role of InsP3 R-I on liver regeneration and hepatocyte proliferation, as assessed by liver to body mass ratio, PCNA expression, immunoblots and measurements of intracellular Ca(2+) signalling. RESULTS: AdsiRNA-I efficiently infected the liver as demonstrated by the expression of ß-galactosidase throughout the liver lobules. Moreover, this construct selectively and efficiently reduced the expression of InsP3 R-I, as evaluated by immunoblots. Expression of AdsiRNA-I in liver decreased peak Ca(2+) amplitude induced by vasopressin in isolated hepatocytes 2 days after HX. Reduced InsP3 R-I expression prior to HX also delayed liver regeneration, as measured by liver to body weight ratio, and reduced hepatocyte proliferation, as evaluated by PCNA staining, at the same time point. At later stages of regeneration, control hepatocytes showed a decreased expression of InsP3 R, as well as reduced InsP3 R-mediated Ca(2+) signalling, events that did not affect liver growth. CONCLUSION: Together, these results show that InsP3 R-I-dependent Ca(2+) signalling is an early triggering pathway required for liver regeneration.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Regeneração Hepática , Fígado/metabolismo , Animais , Biomarcadores/metabolismo , Células CHO , Proliferação de Células , Cricetulus , Células HEK293 , Hepatectomia/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Fígado/fisiopatologia , Fígado/cirurgia , Masculino , Tamanho do Órgão , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção
19.
Cell Commun Signal ; 12: 78, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539979

RESUMO

BACKGROUND: Succinate is an intermediate of the citric acid cycle as well as an extracellular circulating molecule, whose receptor, G protein-coupled receptor-91 (GPR91), was recently identified and characterized in several tissues, including heart. Because some pathological conditions such as ischemia increase succinate blood levels, we investigated the role of this metabolite during a heart ischemic event, using human and rodent models. RESULTS: We found that succinate causes cardiac hypertrophy in a GPR91 dependent manner. GPR91 activation triggers the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), the expression of calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) and the translocation of histone deacetylase 5 (HDAC5) into the cytoplasm, which are hypertrophic-signaling events. Furthermore, we found that serum levels of succinate are increased in patients with cardiac hypertrophy associated with acute and chronic ischemic diseases. CONCLUSIONS: These results show for the first time that succinate plays an important role in cardiomyocyte hypertrophy through GPR91 activation, and extend our understanding of how ischemia can induce hypertrophic cardiomyopathy.


Assuntos
Cardiopatias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiopatias/patologia , Histona Desacetilases/metabolismo , Humanos , Cirrose Hepática/metabolismo , Camundongos Knockout , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Ácido Succínico/sangue
20.
Cell Commun Signal ; 11(1): 14, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23433362

RESUMO

Calcium (Ca2+) is an essential signal transduction element involved in the regulation of several cellular activities and it is required at various key stages of the cell cycle. Intracellular Ca2+ is crucial for the orderly cell cycle progression and plays a vital role in the regulation of cell proliferation. Recently, it was demonstrated by in vitro and in vivo studies that nucleoplasmic Ca2+ regulates cell growth. Even though the mechanism by which nuclear Ca2+ regulates cell proliferation is not completely understood, there are reports demonstrating that activation of tyrosine kinase receptors (RTKs) leads to translocation of RTKs to the nucleus to generate localized nuclear Ca2+ signaling which are believed to modulate cell proliferation. Moreover, nuclear Ca2+ regulates the expression of genes involved in cell growth. This review will describe the nuclear Ca2+ signaling machinery and its role in cell proliferation. Additionally, the potential role of nuclear Ca2+ as a target in cancer therapy will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA